diff options
author | Michael Stapelberg <stapelberg@users.noreply.github.com> | 2022-01-09 22:17:15 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-01-10 08:17:15 +1100 |
commit | 7c186ebb974b4bbadbb74a7610bab5d2f66d030e (patch) | |
tree | c91b9635f5494180acbf19cc6e205a18eb598470 /platforms | |
parent | 1ed5c48d939ce711977e345bd127ec10415ae6af (diff) | |
download | qmk_firmware-7c186ebb974b4bbadbb74a7610bab5d2f66d030e.tar.gz qmk_firmware-7c186ebb974b4bbadbb74a7610bab5d2f66d030e.zip |
Revert "core: make the full 4096 bytes of EEPROM work on Teensy 3.6 (#12947)" (#15695)
This reverts commit 7f8faa429e0c0662cec34a7d60e33ca58333d6d7.
related to https://github.com/qmk/qmk_firmware/issues/15521
Diffstat (limited to 'platforms')
-rw-r--r-- | platforms/chibios/eeprom_teensy.c | 213 |
1 files changed, 14 insertions, 199 deletions
diff --git a/platforms/chibios/eeprom_teensy.c b/platforms/chibios/eeprom_teensy.c index 97da6f9e1..4aaf66526 100644 --- a/platforms/chibios/eeprom_teensy.c +++ b/platforms/chibios/eeprom_teensy.c | |||
@@ -39,126 +39,7 @@ | |||
39 | * SOFTWARE. | 39 | * SOFTWARE. |
40 | */ | 40 | */ |
41 | 41 | ||
42 | #define SMC_PMSTAT_RUN ((uint8_t)0x01) | 42 | #if defined(K20x) /* chip selection */ |
43 | #define SMC_PMSTAT_HSRUN ((uint8_t)0x80) | ||
44 | |||
45 | #define F_CPU KINETIS_SYSCLK_FREQUENCY | ||
46 | |||
47 | static inline int kinetis_hsrun_disable(void) { | ||
48 | #if defined(MK66F18) | ||
49 | if (SMC->PMSTAT == SMC_PMSTAT_HSRUN) { | ||
50 | // First, reduce the CPU clock speed, but do not change | ||
51 | // the peripheral speed (F_BUS). Serial1 & Serial2 baud | ||
52 | // rates will be impacted, but most other peripherals | ||
53 | // will continue functioning at the same speed. | ||
54 | # if F_CPU == 256000000 && F_BUS == 64000000 | ||
55 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // TODO: TEST | ||
56 | # elif F_CPU == 256000000 && F_BUS == 128000000 | ||
57 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // TODO: TEST | ||
58 | # elif F_CPU == 240000000 && F_BUS == 60000000 | ||
59 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok | ||
60 | # elif F_CPU == 240000000 && F_BUS == 80000000 | ||
61 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok | ||
62 | # elif F_CPU == 240000000 && F_BUS == 120000000 | ||
63 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok | ||
64 | # elif F_CPU == 216000000 && F_BUS == 54000000 | ||
65 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok | ||
66 | # elif F_CPU == 216000000 && F_BUS == 72000000 | ||
67 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok | ||
68 | # elif F_CPU == 216000000 && F_BUS == 108000000 | ||
69 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok | ||
70 | # elif F_CPU == 192000000 && F_BUS == 48000000 | ||
71 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok | ||
72 | # elif F_CPU == 192000000 && F_BUS == 64000000 | ||
73 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok | ||
74 | # elif F_CPU == 192000000 && F_BUS == 96000000 | ||
75 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok | ||
76 | # elif F_CPU == 180000000 && F_BUS == 60000000 | ||
77 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok | ||
78 | # elif F_CPU == 180000000 && F_BUS == 90000000 | ||
79 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok | ||
80 | # elif F_CPU == 168000000 && F_BUS == 56000000 | ||
81 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5); // ok | ||
82 | # elif F_CPU == 144000000 && F_BUS == 48000000 | ||
83 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5); // ok | ||
84 | # elif F_CPU == 144000000 && F_BUS == 72000000 | ||
85 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 5); // ok | ||
86 | # elif F_CPU == 120000000 && F_BUS == 60000000 | ||
87 | SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(KINETIS_CLKDIV1_OUTDIV1 - 1) | SIM_CLKDIV1_OUTDIV2(KINETIS_CLKDIV1_OUTDIV2 - 1) | | ||
88 | # if defined(MK66F18) | ||
89 | SIM_CLKDIV1_OUTDIV3(KINETIS_CLKDIV1_OUTDIV3 - 1) | | ||
90 | # endif | ||
91 | SIM_CLKDIV1_OUTDIV4(KINETIS_CLKDIV1_OUTDIV4 - 1); | ||
92 | # else | ||
93 | return 0; | ||
94 | # endif | ||
95 | // Then turn off HSRUN mode | ||
96 | SMC->PMCTRL = SMC_PMCTRL_RUNM_SET(0); | ||
97 | while (SMC->PMSTAT == SMC_PMSTAT_HSRUN) | ||
98 | ; // wait | ||
99 | return 1; | ||
100 | } | ||
101 | #endif | ||
102 | return 0; | ||
103 | } | ||
104 | |||
105 | static inline int kinetis_hsrun_enable(void) { | ||
106 | #if defined(MK66F18) | ||
107 | if (SMC->PMSTAT == SMC_PMSTAT_RUN) { | ||
108 | // Turn HSRUN mode on | ||
109 | SMC->PMCTRL = SMC_PMCTRL_RUNM_SET(3); | ||
110 | while (SMC->PMSTAT != SMC_PMSTAT_HSRUN) { | ||
111 | ; | ||
112 | } // wait | ||
113 | // Then configure clock for full speed | ||
114 | # if F_CPU == 256000000 && F_BUS == 64000000 | ||
115 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7); | ||
116 | # elif F_CPU == 256000000 && F_BUS == 128000000 | ||
117 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7); | ||
118 | # elif F_CPU == 240000000 && F_BUS == 60000000 | ||
119 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7); | ||
120 | # elif F_CPU == 240000000 && F_BUS == 80000000 | ||
121 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7); | ||
122 | # elif F_CPU == 240000000 && F_BUS == 120000000 | ||
123 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7); | ||
124 | # elif F_CPU == 216000000 && F_BUS == 54000000 | ||
125 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7); | ||
126 | # elif F_CPU == 216000000 && F_BUS == 72000000 | ||
127 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7); | ||
128 | # elif F_CPU == 216000000 && F_BUS == 108000000 | ||
129 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7); | ||
130 | # elif F_CPU == 192000000 && F_BUS == 48000000 | ||
131 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 6); | ||
132 | # elif F_CPU == 192000000 && F_BUS == 64000000 | ||
133 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6); | ||
134 | # elif F_CPU == 192000000 && F_BUS == 96000000 | ||
135 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6); | ||
136 | # elif F_CPU == 180000000 && F_BUS == 60000000 | ||
137 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6); | ||
138 | # elif F_CPU == 180000000 && F_BUS == 90000000 | ||
139 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6); | ||
140 | # elif F_CPU == 168000000 && F_BUS == 56000000 | ||
141 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 5); | ||
142 | # elif F_CPU == 144000000 && F_BUS == 48000000 | ||
143 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 4); | ||
144 | # elif F_CPU == 144000000 && F_BUS == 72000000 | ||
145 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 4); | ||
146 | # elif F_CPU == 120000000 && F_BUS == 60000000 | ||
147 | SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(KINETIS_CLKDIV1_OUTDIV1 - 1) | SIM_CLKDIV1_OUTDIV2(KINETIS_CLKDIV1_OUTDIV2 - 1) | | ||
148 | # if defined(MK66F18) | ||
149 | SIM_CLKDIV1_OUTDIV3(KINETIS_CLKDIV1_OUTDIV3 - 1) | | ||
150 | # endif | ||
151 | SIM_CLKDIV1_OUTDIV4(KINETIS_CLKDIV1_OUTDIV4 - 1); | ||
152 | # else | ||
153 | return 0; | ||
154 | # endif | ||
155 | return 1; | ||
156 | } | ||
157 | #endif | ||
158 | return 0; | ||
159 | } | ||
160 | |||
161 | #if defined(K20x) || defined(MK66F18) /* chip selection */ | ||
162 | /* Teensy 3.0, 3.1, 3.2; mchck; infinity keyboard */ | 43 | /* Teensy 3.0, 3.1, 3.2; mchck; infinity keyboard */ |
163 | 44 | ||
164 | // The EEPROM is really RAM with a hardware-based backup system to | 45 | // The EEPROM is really RAM with a hardware-based backup system to |
@@ -188,34 +69,22 @@ static inline int kinetis_hsrun_enable(void) { | |||
188 | // | 69 | // |
189 | # define HANDLE_UNALIGNED_WRITES | 70 | # define HANDLE_UNALIGNED_WRITES |
190 | 71 | ||
191 | # if defined(K20x) | ||
192 | # define EEPROM_MAX 2048 | ||
193 | # define EEPARTITION 0x03 // all 32K dataflash for EEPROM, none for Data | ||
194 | # define EEESPLIT 0x30 // must be 0x30 on these chips | ||
195 | # elif defined(MK66F18) | ||
196 | # define EEPROM_MAX 4096 | ||
197 | # define EEPARTITION 0x05 // 128K dataflash for EEPROM, 128K for Data | ||
198 | # define EEESPLIT 0x10 // best endurance: 0x00 = first 12%, 0x10 = first 25%, 0x30 = all equal | ||
199 | # endif | ||
200 | |||
201 | // Minimum EEPROM Endurance | 72 | // Minimum EEPROM Endurance |
202 | // ------------------------ | 73 | // ------------------------ |
203 | # if (EEPROM_SIZE == 4096) | 74 | # if (EEPROM_SIZE == 2048) // 35000 writes/byte or 70000 writes/word |
204 | # define EEESIZE 0x02 | 75 | # define EEESIZE 0x33 |
205 | # elif (EEPROM_SIZE == 2048) // 35000 writes/byte or 70000 writes/word | ||
206 | # define EEESIZE 0x03 | ||
207 | # elif (EEPROM_SIZE == 1024) // 75000 writes/byte or 150000 writes/word | 76 | # elif (EEPROM_SIZE == 1024) // 75000 writes/byte or 150000 writes/word |
208 | # define EEESIZE 0x04 | 77 | # define EEESIZE 0x34 |
209 | # elif (EEPROM_SIZE == 512) // 155000 writes/byte or 310000 writes/word | 78 | # elif (EEPROM_SIZE == 512) // 155000 writes/byte or 310000 writes/word |
210 | # define EEESIZE 0x05 | 79 | # define EEESIZE 0x35 |
211 | # elif (EEPROM_SIZE == 256) // 315000 writes/byte or 630000 writes/word | 80 | # elif (EEPROM_SIZE == 256) // 315000 writes/byte or 630000 writes/word |
212 | # define EEESIZE 0x06 | 81 | # define EEESIZE 0x36 |
213 | # elif (EEPROM_SIZE == 128) // 635000 writes/byte or 1270000 writes/word | 82 | # elif (EEPROM_SIZE == 128) // 635000 writes/byte or 1270000 writes/word |
214 | # define EEESIZE 0x07 | 83 | # define EEESIZE 0x37 |
215 | # elif (EEPROM_SIZE == 64) // 1275000 writes/byte or 2550000 writes/word | 84 | # elif (EEPROM_SIZE == 64) // 1275000 writes/byte or 2550000 writes/word |
216 | # define EEESIZE 0x08 | 85 | # define EEESIZE 0x38 |
217 | # elif (EEPROM_SIZE == 32) // 2555000 writes/byte or 5110000 writes/word | 86 | # elif (EEPROM_SIZE == 32) // 2555000 writes/byte or 5110000 writes/word |
218 | # define EEESIZE 0x09 | 87 | # define EEESIZE 0x39 |
219 | # endif | 88 | # endif |
220 | 89 | ||
221 | /** \brief eeprom initialization | 90 | /** \brief eeprom initialization |
@@ -228,21 +97,15 @@ void eeprom_initialize(void) { | |||
228 | uint8_t status; | 97 | uint8_t status; |
229 | 98 | ||
230 | if (FTFL->FCNFG & FTFL_FCNFG_RAMRDY) { | 99 | if (FTFL->FCNFG & FTFL_FCNFG_RAMRDY) { |
231 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
232 | if (stat) FTFL->FSTAT = stat; | ||
233 | |||
234 | // FlexRAM is configured as traditional RAM | 100 | // FlexRAM is configured as traditional RAM |
235 | // We need to reconfigure for EEPROM usage | 101 | // We need to reconfigure for EEPROM usage |
236 | kinetis_hsrun_disable(); | 102 | FTFL->FCCOB0 = 0x80; // PGMPART = Program Partition Command |
237 | FTFL->FCCOB0 = 0x80; // PGMPART = Program Partition Command | 103 | FTFL->FCCOB4 = EEESIZE; // EEPROM Size |
238 | FTFL->FCCOB3 = 0; | 104 | FTFL->FCCOB5 = 0x03; // 0K for Dataflash, 32K for EEPROM backup |
239 | FTFL->FCCOB4 = EEESPLIT | EEESIZE; | ||
240 | FTFL->FCCOB5 = EEPARTITION; | ||
241 | __disable_irq(); | 105 | __disable_irq(); |
242 | // do_flash_cmd() must execute from RAM. Luckily the C syntax is simple... | 106 | // do_flash_cmd() must execute from RAM. Luckily the C syntax is simple... |
243 | (*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFL->FSTAT)); | 107 | (*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFL->FSTAT)); |
244 | __enable_irq(); | 108 | __enable_irq(); |
245 | kinetis_hsrun_enable(); | ||
246 | status = FTFL->FSTAT; | 109 | status = FTFL->FSTAT; |
247 | if (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL)) { | 110 | if (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL)) { |
248 | FTFL->FSTAT = (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL)); | 111 | FTFL->FSTAT = (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL)); |
@@ -251,11 +114,11 @@ void eeprom_initialize(void) { | |||
251 | } | 114 | } |
252 | // wait for eeprom to become ready (is this really necessary?) | 115 | // wait for eeprom to become ready (is this really necessary?) |
253 | while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) { | 116 | while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) { |
254 | if (++count > 200000) break; | 117 | if (++count > 20000) break; |
255 | } | 118 | } |
256 | } | 119 | } |
257 | 120 | ||
258 | # define FlexRAM ((volatile uint8_t *)0x14000000) | 121 | # define FlexRAM ((uint8_t *)0x14000000) |
259 | 122 | ||
260 | /** \brief eeprom read byte | 123 | /** \brief eeprom read byte |
261 | * | 124 | * |
@@ -332,12 +195,8 @@ void eeprom_write_byte(uint8_t *addr, uint8_t value) { | |||
332 | if (offset >= EEPROM_SIZE) return; | 195 | if (offset >= EEPROM_SIZE) return; |
333 | if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize(); | 196 | if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize(); |
334 | if (FlexRAM[offset] != value) { | 197 | if (FlexRAM[offset] != value) { |
335 | kinetis_hsrun_disable(); | ||
336 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
337 | if (stat) FTFL->FSTAT = stat; | ||
338 | FlexRAM[offset] = value; | 198 | FlexRAM[offset] = value; |
339 | flexram_wait(); | 199 | flexram_wait(); |
340 | kinetis_hsrun_enable(); | ||
341 | } | 200 | } |
342 | } | 201 | } |
343 | 202 | ||
@@ -354,30 +213,18 @@ void eeprom_write_word(uint16_t *addr, uint16_t value) { | |||
354 | if ((offset & 1) == 0) { | 213 | if ((offset & 1) == 0) { |
355 | # endif | 214 | # endif |
356 | if (*(uint16_t *)(&FlexRAM[offset]) != value) { | 215 | if (*(uint16_t *)(&FlexRAM[offset]) != value) { |
357 | kinetis_hsrun_disable(); | ||
358 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
359 | if (stat) FTFL->FSTAT = stat; | ||
360 | *(uint16_t *)(&FlexRAM[offset]) = value; | 216 | *(uint16_t *)(&FlexRAM[offset]) = value; |
361 | flexram_wait(); | 217 | flexram_wait(); |
362 | kinetis_hsrun_enable(); | ||
363 | } | 218 | } |
364 | # ifdef HANDLE_UNALIGNED_WRITES | 219 | # ifdef HANDLE_UNALIGNED_WRITES |
365 | } else { | 220 | } else { |
366 | if (FlexRAM[offset] != value) { | 221 | if (FlexRAM[offset] != value) { |
367 | kinetis_hsrun_disable(); | ||
368 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
369 | if (stat) FTFL->FSTAT = stat; | ||
370 | FlexRAM[offset] = value; | 222 | FlexRAM[offset] = value; |
371 | flexram_wait(); | 223 | flexram_wait(); |
372 | kinetis_hsrun_enable(); | ||
373 | } | 224 | } |
374 | if (FlexRAM[offset + 1] != (value >> 8)) { | 225 | if (FlexRAM[offset + 1] != (value >> 8)) { |
375 | kinetis_hsrun_disable(); | ||
376 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
377 | if (stat) FTFL->FSTAT = stat; | ||
378 | FlexRAM[offset + 1] = value >> 8; | 226 | FlexRAM[offset + 1] = value >> 8; |
379 | flexram_wait(); | 227 | flexram_wait(); |
380 | kinetis_hsrun_enable(); | ||
381 | } | 228 | } |
382 | } | 229 | } |
383 | # endif | 230 | # endif |
@@ -397,57 +244,33 @@ void eeprom_write_dword(uint32_t *addr, uint32_t value) { | |||
397 | case 0: | 244 | case 0: |
398 | # endif | 245 | # endif |
399 | if (*(uint32_t *)(&FlexRAM[offset]) != value) { | 246 | if (*(uint32_t *)(&FlexRAM[offset]) != value) { |
400 | kinetis_hsrun_disable(); | ||
401 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
402 | if (stat) FTFL->FSTAT = stat; | ||
403 | *(uint32_t *)(&FlexRAM[offset]) = value; | 247 | *(uint32_t *)(&FlexRAM[offset]) = value; |
404 | flexram_wait(); | 248 | flexram_wait(); |
405 | kinetis_hsrun_enable(); | ||
406 | } | 249 | } |
407 | return; | 250 | return; |
408 | # ifdef HANDLE_UNALIGNED_WRITES | 251 | # ifdef HANDLE_UNALIGNED_WRITES |
409 | case 2: | 252 | case 2: |
410 | if (*(uint16_t *)(&FlexRAM[offset]) != value) { | 253 | if (*(uint16_t *)(&FlexRAM[offset]) != value) { |
411 | kinetis_hsrun_disable(); | ||
412 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
413 | if (stat) FTFL->FSTAT = stat; | ||
414 | *(uint16_t *)(&FlexRAM[offset]) = value; | 254 | *(uint16_t *)(&FlexRAM[offset]) = value; |
415 | flexram_wait(); | 255 | flexram_wait(); |
416 | kinetis_hsrun_enable(); | ||
417 | } | 256 | } |
418 | if (*(uint16_t *)(&FlexRAM[offset + 2]) != (value >> 16)) { | 257 | if (*(uint16_t *)(&FlexRAM[offset + 2]) != (value >> 16)) { |
419 | kinetis_hsrun_disable(); | ||
420 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
421 | if (stat) FTFL->FSTAT = stat; | ||
422 | *(uint16_t *)(&FlexRAM[offset + 2]) = value >> 16; | 258 | *(uint16_t *)(&FlexRAM[offset + 2]) = value >> 16; |
423 | flexram_wait(); | 259 | flexram_wait(); |
424 | kinetis_hsrun_enable(); | ||
425 | } | 260 | } |
426 | return; | 261 | return; |
427 | default: | 262 | default: |
428 | if (FlexRAM[offset] != value) { | 263 | if (FlexRAM[offset] != value) { |
429 | kinetis_hsrun_disable(); | ||
430 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
431 | if (stat) FTFL->FSTAT = stat; | ||
432 | FlexRAM[offset] = value; | 264 | FlexRAM[offset] = value; |
433 | flexram_wait(); | 265 | flexram_wait(); |
434 | kinetis_hsrun_enable(); | ||
435 | } | 266 | } |
436 | if (*(uint16_t *)(&FlexRAM[offset + 1]) != (value >> 8)) { | 267 | if (*(uint16_t *)(&FlexRAM[offset + 1]) != (value >> 8)) { |
437 | kinetis_hsrun_disable(); | ||
438 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
439 | if (stat) FTFL->FSTAT = stat; | ||
440 | *(uint16_t *)(&FlexRAM[offset + 1]) = value >> 8; | 268 | *(uint16_t *)(&FlexRAM[offset + 1]) = value >> 8; |
441 | flexram_wait(); | 269 | flexram_wait(); |
442 | kinetis_hsrun_enable(); | ||
443 | } | 270 | } |
444 | if (FlexRAM[offset + 3] != (value >> 24)) { | 271 | if (FlexRAM[offset + 3] != (value >> 24)) { |
445 | kinetis_hsrun_disable(); | ||
446 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
447 | if (stat) FTFL->FSTAT = stat; | ||
448 | FlexRAM[offset + 3] = value >> 24; | 272 | FlexRAM[offset + 3] = value >> 24; |
449 | flexram_wait(); | 273 | flexram_wait(); |
450 | kinetis_hsrun_enable(); | ||
451 | } | 274 | } |
452 | } | 275 | } |
453 | # endif | 276 | # endif |
@@ -465,7 +288,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) { | |||
465 | if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize(); | 288 | if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize(); |
466 | if (len >= EEPROM_SIZE) len = EEPROM_SIZE; | 289 | if (len >= EEPROM_SIZE) len = EEPROM_SIZE; |
467 | if (offset + len >= EEPROM_SIZE) len = EEPROM_SIZE - offset; | 290 | if (offset + len >= EEPROM_SIZE) len = EEPROM_SIZE - offset; |
468 | kinetis_hsrun_disable(); | ||
469 | while (len > 0) { | 291 | while (len > 0) { |
470 | uint32_t lsb = offset & 3; | 292 | uint32_t lsb = offset & 3; |
471 | if (lsb == 0 && len >= 4) { | 293 | if (lsb == 0 && len >= 4) { |
@@ -476,8 +298,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) { | |||
476 | val32 |= (*src++ << 16); | 298 | val32 |= (*src++ << 16); |
477 | val32 |= (*src++ << 24); | 299 | val32 |= (*src++ << 24); |
478 | if (*(uint32_t *)(&FlexRAM[offset]) != val32) { | 300 | if (*(uint32_t *)(&FlexRAM[offset]) != val32) { |
479 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
480 | if (stat) FTFL->FSTAT = stat; | ||
481 | *(uint32_t *)(&FlexRAM[offset]) = val32; | 301 | *(uint32_t *)(&FlexRAM[offset]) = val32; |
482 | flexram_wait(); | 302 | flexram_wait(); |
483 | } | 303 | } |
@@ -489,8 +309,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) { | |||
489 | val16 = *src++; | 309 | val16 = *src++; |
490 | val16 |= (*src++ << 8); | 310 | val16 |= (*src++ << 8); |
491 | if (*(uint16_t *)(&FlexRAM[offset]) != val16) { | 311 | if (*(uint16_t *)(&FlexRAM[offset]) != val16) { |
492 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
493 | if (stat) FTFL->FSTAT = stat; | ||
494 | *(uint16_t *)(&FlexRAM[offset]) = val16; | 312 | *(uint16_t *)(&FlexRAM[offset]) = val16; |
495 | flexram_wait(); | 313 | flexram_wait(); |
496 | } | 314 | } |
@@ -500,8 +318,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) { | |||
500 | // write 8 bits | 318 | // write 8 bits |
501 | uint8_t val8 = *src++; | 319 | uint8_t val8 = *src++; |
502 | if (FlexRAM[offset] != val8) { | 320 | if (FlexRAM[offset] != val8) { |
503 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
504 | if (stat) FTFL->FSTAT = stat; | ||
505 | FlexRAM[offset] = val8; | 321 | FlexRAM[offset] = val8; |
506 | flexram_wait(); | 322 | flexram_wait(); |
507 | } | 323 | } |
@@ -509,7 +325,6 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) { | |||
509 | len--; | 325 | len--; |
510 | } | 326 | } |
511 | } | 327 | } |
512 | kinetis_hsrun_enable(); | ||
513 | } | 328 | } |
514 | 329 | ||
515 | /* | 330 | /* |