aboutsummaryrefslogtreecommitdiff
path: root/quantum/split_common/transactions.c
diff options
context:
space:
mode:
authorNick Brassel <nick@tzarc.org>2021-06-18 09:10:06 +1000
committerGitHub <noreply@github.com>2021-06-18 09:10:06 +1000
commit172e6a703041363decd6fc829542f33180c13beb (patch)
treea5d4afaa672ab44826865fd76b201e3899083192 /quantum/split_common/transactions.c
parentef92c9ee2cf4745637635ec1895399e4f013914c (diff)
downloadqmk_firmware-172e6a703041363decd6fc829542f33180c13beb.tar.gz
qmk_firmware-172e6a703041363decd6fc829542f33180c13beb.zip
Extensible split data sync (#11930)
* Extensible split data sync capability through transactions. - Split common transport has been split up between the transport layer and data layer. - Split "transactions" model used, with convergence between I2C and serial data definitions. - Slave matrix "generation count" is used to determine if the full slave matrix needs to be retrieved. - Encoders get the same "generation count" treatment. - All other blocks of data are synchronised when a change is detected. - All transmissions have a globally-configurable deadline before a transmission is forced (`FORCED_SYNC_THROTTLE_MS`, default 100ms). - Added atomicity for all core-synced data, preventing partial updates - Added retries to AVR i2c_master's i2c_start, to minimise the number of failed transactions when interrupts are disabled on the slave due to atomicity checks. - Some keyboards have had slight modifications made in order to ensure that they still build due to firmware size restrictions. * Fixup LED_MATRIX compile. * Parameterise ERROR_DISCONNECT_COUNT.
Diffstat (limited to 'quantum/split_common/transactions.c')
-rw-r--r--quantum/split_common/transactions.c670
1 files changed, 670 insertions, 0 deletions
diff --git a/quantum/split_common/transactions.c b/quantum/split_common/transactions.c
new file mode 100644
index 000000000..99a8623b3
--- /dev/null
+++ b/quantum/split_common/transactions.c
@@ -0,0 +1,670 @@
1/* Copyright 2021 QMK
2 *
3 * This program is free software: you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation, either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17#include <string.h>
18#include <stddef.h>
19
20#include "debug.h"
21#include "matrix.h"
22#include "quantum.h"
23#include "transactions.h"
24#include "transport.h"
25#include "transaction_id_define.h"
26
27#define SYNC_TIMER_OFFSET 2
28
29#ifndef FORCED_SYNC_THROTTLE_MS
30# define FORCED_SYNC_THROTTLE_MS 100
31#endif // FORCED_SYNC_THROTTLE_MS
32
33#define sizeof_member(type, member) sizeof(((type *)NULL)->member)
34
35#define trans_initiator2target_initializer_cb(member, cb) \
36 { &dummy, sizeof_member(split_shared_memory_t, member), offsetof(split_shared_memory_t, member), 0, 0, cb }
37#define trans_initiator2target_initializer(member) trans_initiator2target_initializer_cb(member, NULL)
38
39#define trans_target2initiator_initializer_cb(member, cb) \
40 { &dummy, 0, 0, sizeof_member(split_shared_memory_t, member), offsetof(split_shared_memory_t, member), cb }
41#define trans_target2initiator_initializer(member) trans_target2initiator_initializer_cb(member, NULL)
42
43#define transport_write(id, data, length) transport_execute_transaction(id, data, length, NULL, 0)
44#define transport_read(id, data, length) transport_execute_transaction(id, NULL, 0, data, length)
45
46static uint8_t crc8(const void *data, size_t len) {
47 const uint8_t *p = (const uint8_t *)data;
48 uint8_t crc = 0xff;
49 size_t i, j;
50 for (i = 0; i < len; i++) {
51 crc ^= p[i];
52 for (j = 0; j < 8; j++) {
53 if ((crc & 0x80) != 0)
54 crc = (uint8_t)((crc << 1) ^ 0x31);
55 else
56 crc <<= 1;
57 }
58 }
59 return crc;
60}
61
62#if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
63// Forward-declare the RPC callback handlers
64void slave_rpc_info_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer);
65void slave_rpc_exec_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer);
66#endif // defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
67
68////////////////////////////////////////////////////
69// Helpers
70
71bool transaction_handler_master(bool okay, matrix_row_t master_matrix[], matrix_row_t slave_matrix[], const char *prefix, bool (*handler)(matrix_row_t master_matrix[], matrix_row_t slave_matrix[])) {
72 if (okay) {
73 bool this_okay = true;
74 for (int iter = 1; iter <= 10; ++iter) {
75 if (!this_okay) {
76 for (int i = 0; i < iter * iter; ++i) {
77 wait_us(10);
78 }
79 }
80 ATOMIC_BLOCK_FORCEON { this_okay = handler(master_matrix, slave_matrix); };
81 if (this_okay) break;
82 }
83 okay &= this_okay;
84 if (!okay) {
85 dprintf("Failed to execute %s\n", prefix);
86 }
87 }
88 return okay;
89}
90
91#define TRANSACTION_HANDLER_MASTER(prefix) \
92 do { \
93 okay &= transaction_handler_master(okay, master_matrix, slave_matrix, #prefix, &prefix##_master); \
94 } while (0)
95
96#define TRANSACTION_HANDLER_SLAVE(prefix) \
97 do { \
98 ATOMIC_BLOCK_FORCEON { prefix##_slave(master_matrix, slave_matrix); }; \
99 } while (0)
100
101inline static bool read_if_checksum_mismatch(int8_t trans_id_checksum, int8_t trans_id_retrieve, uint32_t *last_update, void *destination, const void *equiv_shmem, size_t length) {
102 uint8_t curr_checksum;
103 bool okay = transport_read(trans_id_checksum, &curr_checksum, sizeof(curr_checksum));
104 if (okay && (timer_elapsed32(*last_update) >= FORCED_SYNC_THROTTLE_MS || curr_checksum != crc8(equiv_shmem, length))) {
105 okay &= transport_read(trans_id_retrieve, destination, length);
106 okay &= curr_checksum == crc8(equiv_shmem, length);
107 if (okay) {
108 *last_update = timer_read32();
109 }
110 } else {
111 memcpy(destination, equiv_shmem, length);
112 }
113 return okay;
114}
115
116inline static bool send_if_condition(int8_t trans_id, uint32_t *last_update, bool condition, void *source, size_t length) {
117 bool okay = true;
118 if (timer_elapsed32(*last_update) >= FORCED_SYNC_THROTTLE_MS || condition) {
119 okay &= transport_write(trans_id, source, length);
120 if (okay) {
121 *last_update = timer_read32();
122 }
123 }
124 return okay;
125}
126
127inline static bool send_if_data_mismatch(int8_t trans_id, uint32_t *last_update, void *source, const void *equiv_shmem, size_t length) {
128 // Just run a memcmp to compare the source and equivalent shmem location
129 return send_if_condition(trans_id, last_update, (memcmp(source, equiv_shmem, length) != 0), source, length);
130}
131
132////////////////////////////////////////////////////
133// Slave matrix
134
135static bool slave_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
136 static uint32_t last_update = 0;
137 static matrix_row_t last_matrix[(MATRIX_ROWS) / 2] = {0}; // last successfully-read matrix, so we can replicate if there are checksum errors
138 matrix_row_t temp_matrix[(MATRIX_ROWS) / 2]; // holding area while we test whether or not checksum is correct
139
140 bool okay = read_if_checksum_mismatch(GET_SLAVE_MATRIX_CHECKSUM, GET_SLAVE_MATRIX_DATA, &last_update, temp_matrix, split_shmem->smatrix.matrix, sizeof(split_shmem->smatrix.matrix));
141 if (okay) {
142 // Checksum matches the received data, save as the last matrix state
143 memcpy(last_matrix, temp_matrix, sizeof(temp_matrix));
144 }
145 // Copy out the last-known-good matrix state to the slave matrix
146 memcpy(slave_matrix, last_matrix, sizeof(last_matrix));
147 return okay;
148}
149
150static void slave_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
151 memcpy(split_shmem->smatrix.matrix, slave_matrix, sizeof(split_shmem->smatrix.matrix));
152 split_shmem->smatrix.checksum = crc8(split_shmem->smatrix.matrix, sizeof(split_shmem->smatrix.matrix));
153}
154
155// clang-format off
156#define TRANSACTIONS_SLAVE_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(slave_matrix_handlers)
157#define TRANSACTIONS_SLAVE_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE(slave_matrix_handlers)
158#define TRANSACTIONS_SLAVE_MATRIX_REGISTRATIONS \
159 [GET_SLAVE_MATRIX_CHECKSUM] = trans_target2initiator_initializer(smatrix.checksum), \
160 [GET_SLAVE_MATRIX_DATA] = trans_target2initiator_initializer(smatrix.matrix),
161// clang-format on
162
163////////////////////////////////////////////////////
164// Master matrix
165
166#ifdef SPLIT_TRANSPORT_MIRROR
167
168static bool master_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
169 static uint32_t last_update = 0;
170 return send_if_data_mismatch(PUT_MASTER_MATRIX, &last_update, master_matrix, split_shmem->mmatrix.matrix, sizeof(split_shmem->mmatrix.matrix));
171}
172
173static void master_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
174 // Always copy to the master matrix
175 memcpy(master_matrix, split_shmem->mmatrix.matrix, sizeof(split_shmem->mmatrix.matrix));
176}
177
178# define TRANSACTIONS_MASTER_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(master_matrix_handlers)
179# define TRANSACTIONS_MASTER_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE(master_matrix_handlers)
180# define TRANSACTIONS_MASTER_MATRIX_REGISTRATIONS [PUT_MASTER_MATRIX] = trans_initiator2target_initializer(mmatrix.matrix),
181
182#else // SPLIT_TRANSPORT_MIRROR
183
184# define TRANSACTIONS_MASTER_MATRIX_MASTER()
185# define TRANSACTIONS_MASTER_MATRIX_SLAVE()
186# define TRANSACTIONS_MASTER_MATRIX_REGISTRATIONS
187
188#endif // SPLIT_TRANSPORT_MIRROR
189
190////////////////////////////////////////////////////
191// Encoders
192
193#ifdef ENCODER_ENABLE
194
195static bool encoder_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
196 static uint32_t last_update = 0;
197 uint8_t temp_state[NUMBER_OF_ENCODERS];
198
199 bool okay = read_if_checksum_mismatch(GET_ENCODERS_CHECKSUM, GET_ENCODERS_DATA, &last_update, temp_state, split_shmem->encoders.state, sizeof(temp_state));
200 if (okay) encoder_update_raw(temp_state);
201 return okay;
202}
203
204static void encoder_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
205 uint8_t encoder_state[NUMBER_OF_ENCODERS];
206 encoder_state_raw(encoder_state);
207 // Always prepare the encoder state for read.
208 memcpy(split_shmem->encoders.state, encoder_state, sizeof(encoder_state));
209 // Now update the checksum given that the encoders has been written to
210 split_shmem->encoders.checksum = crc8(encoder_state, sizeof(encoder_state));
211}
212
213// clang-format off
214# define TRANSACTIONS_ENCODERS_MASTER() TRANSACTION_HANDLER_MASTER(encoder_handlers)
215# define TRANSACTIONS_ENCODERS_SLAVE() TRANSACTION_HANDLER_SLAVE(encoder_handlers)
216# define TRANSACTIONS_ENCODERS_REGISTRATIONS \
217 [GET_ENCODERS_CHECKSUM] = trans_target2initiator_initializer(encoders.checksum), \
218 [GET_ENCODERS_DATA] = trans_target2initiator_initializer(encoders.state),
219// clang-format on
220
221#else // ENCODER_ENABLE
222
223# define TRANSACTIONS_ENCODERS_MASTER()
224# define TRANSACTIONS_ENCODERS_SLAVE()
225# define TRANSACTIONS_ENCODERS_REGISTRATIONS
226
227#endif // ENCODER_ENABLE
228
229////////////////////////////////////////////////////
230// Sync timer
231
232#ifndef DISABLE_SYNC_TIMER
233
234static bool sync_timer_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
235 static uint32_t last_update = 0;
236
237 bool okay = true;
238 if (timer_elapsed32(last_update) >= FORCED_SYNC_THROTTLE_MS) {
239 uint32_t sync_timer = sync_timer_read32() + SYNC_TIMER_OFFSET;
240 okay &= transport_write(PUT_SYNC_TIMER, &sync_timer, sizeof(sync_timer));
241 if (okay) {
242 last_update = timer_read32();
243 }
244 }
245 return okay;
246}
247
248static void sync_timer_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
249 static uint32_t last_sync_timer = 0;
250 if (last_sync_timer != split_shmem->sync_timer) {
251 last_sync_timer = split_shmem->sync_timer;
252 sync_timer_update(last_sync_timer);
253 }
254}
255
256# define TRANSACTIONS_SYNC_TIMER_MASTER() TRANSACTION_HANDLER_MASTER(sync_timer_handlers)
257# define TRANSACTIONS_SYNC_TIMER_SLAVE() TRANSACTION_HANDLER_SLAVE(sync_timer_handlers)
258# define TRANSACTIONS_SYNC_TIMER_REGISTRATIONS [PUT_SYNC_TIMER] = trans_initiator2target_initializer(sync_timer),
259
260#else // DISABLE_SYNC_TIMER
261
262# define TRANSACTIONS_SYNC_TIMER_MASTER()
263# define TRANSACTIONS_SYNC_TIMER_SLAVE()
264# define TRANSACTIONS_SYNC_TIMER_REGISTRATIONS
265
266#endif // DISABLE_SYNC_TIMER
267
268////////////////////////////////////////////////////
269// Layer state
270
271#if !defined(NO_ACTION_LAYER) && defined(SPLIT_LAYER_STATE_ENABLE)
272
273static bool layer_state_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
274 static uint32_t last_layer_state_update = 0;
275 static uint32_t last_default_layer_state_update = 0;
276
277 bool okay = send_if_condition(PUT_LAYER_STATE, &last_layer_state_update, (layer_state != split_shmem->layers.layer_state), &layer_state, sizeof(layer_state));
278 if (okay) {
279 okay &= send_if_condition(PUT_DEFAULT_LAYER_STATE, &last_default_layer_state_update, (default_layer_state != split_shmem->layers.default_layer_state), &default_layer_state, sizeof(default_layer_state));
280 }
281 return okay;
282}
283
284static void layer_state_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
285 layer_state = split_shmem->layers.layer_state;
286 default_layer_state = split_shmem->layers.default_layer_state;
287}
288
289// clang-format off
290# define TRANSACTIONS_LAYER_STATE_MASTER() TRANSACTION_HANDLER_MASTER(layer_state_handlers)
291# define TRANSACTIONS_LAYER_STATE_SLAVE() TRANSACTION_HANDLER_SLAVE(layer_state_handlers)
292# define TRANSACTIONS_LAYER_STATE_REGISTRATIONS \
293 [PUT_LAYER_STATE] = trans_initiator2target_initializer(layers.layer_state), \
294 [PUT_DEFAULT_LAYER_STATE] = trans_initiator2target_initializer(layers.default_layer_state),
295// clang-format on
296
297#else // !defined(NO_ACTION_LAYER) && defined(SPLIT_LAYER_STATE_ENABLE)
298
299# define TRANSACTIONS_LAYER_STATE_MASTER()
300# define TRANSACTIONS_LAYER_STATE_SLAVE()
301# define TRANSACTIONS_LAYER_STATE_REGISTRATIONS
302
303#endif // !defined(NO_ACTION_LAYER) && defined(SPLIT_LAYER_STATE_ENABLE)
304
305////////////////////////////////////////////////////
306// LED state
307
308#ifdef SPLIT_LED_STATE_ENABLE
309
310static bool led_state_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
311 static uint32_t last_update = 0;
312 uint8_t led_state = host_keyboard_leds();
313 return send_if_data_mismatch(PUT_LED_STATE, &last_update, &led_state, &split_shmem->led_state, sizeof(led_state));
314}
315
316static void led_state_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
317 void set_split_host_keyboard_leds(uint8_t led_state);
318 set_split_host_keyboard_leds(split_shmem->led_state);
319}
320
321# define TRANSACTIONS_LED_STATE_MASTER() TRANSACTION_HANDLER_MASTER(led_state_handlers)
322# define TRANSACTIONS_LED_STATE_SLAVE() TRANSACTION_HANDLER_SLAVE(led_state_handlers)
323# define TRANSACTIONS_LED_STATE_REGISTRATIONS [PUT_LED_STATE] = trans_initiator2target_initializer(led_state),
324
325#else // SPLIT_LED_STATE_ENABLE
326
327# define TRANSACTIONS_LED_STATE_MASTER()
328# define TRANSACTIONS_LED_STATE_SLAVE()
329# define TRANSACTIONS_LED_STATE_REGISTRATIONS
330
331#endif // SPLIT_LED_STATE_ENABLE
332
333////////////////////////////////////////////////////
334// Mods
335
336#ifdef SPLIT_MODS_ENABLE
337
338static bool mods_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
339 static uint32_t last_update = 0;
340 bool mods_need_sync = timer_elapsed32(last_update) >= FORCED_SYNC_THROTTLE_MS;
341 split_mods_sync_t new_mods;
342 new_mods.real_mods = get_mods();
343 if (!mods_need_sync && new_mods.real_mods != split_shmem->mods.real_mods) {
344 mods_need_sync = true;
345 }
346
347 new_mods.weak_mods = get_weak_mods();
348 if (!mods_need_sync && new_mods.weak_mods != split_shmem->mods.weak_mods) {
349 mods_need_sync = true;
350 }
351
352# ifndef NO_ACTION_ONESHOT
353 new_mods.oneshot_mods = get_oneshot_mods();
354 if (!mods_need_sync && new_mods.oneshot_mods != split_shmem->mods.oneshot_mods) {
355 mods_need_sync = true;
356 }
357# endif // NO_ACTION_ONESHOT
358
359 bool okay = true;
360 if (mods_need_sync) {
361 okay &= transport_write(PUT_MODS, &new_mods, sizeof(new_mods));
362 if (okay) {
363 last_update = timer_read32();
364 }
365 }
366
367 return okay;
368}
369
370static void mods_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
371 set_mods(split_shmem->mods.real_mods);
372 set_weak_mods(split_shmem->mods.weak_mods);
373# ifndef NO_ACTION_ONESHOT
374 set_oneshot_mods(split_shmem->mods.oneshot_mods);
375# endif
376}
377
378# define TRANSACTIONS_MODS_MASTER() TRANSACTION_HANDLER_MASTER(mods_handlers)
379# define TRANSACTIONS_MODS_SLAVE() TRANSACTION_HANDLER_SLAVE(mods_handlers)
380# define TRANSACTIONS_MODS_REGISTRATIONS [PUT_MODS] = trans_initiator2target_initializer(mods),
381
382#else // SPLIT_MODS_ENABLE
383
384# define TRANSACTIONS_MODS_MASTER()
385# define TRANSACTIONS_MODS_SLAVE()
386# define TRANSACTIONS_MODS_REGISTRATIONS
387
388#endif // SPLIT_MODS_ENABLE
389
390////////////////////////////////////////////////////
391// Backlight
392
393#ifdef BACKLIGHT_ENABLE
394
395static bool backlight_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
396 static uint32_t last_update = 0;
397 uint8_t level = is_backlight_enabled() ? get_backlight_level() : 0;
398 return send_if_condition(PUT_BACKLIGHT, &last_update, (level != split_shmem->backlight_level), &level, sizeof(level));
399}
400
401static void backlight_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { backlight_set(split_shmem->backlight_level); }
402
403# define TRANSACTIONS_BACKLIGHT_MASTER() TRANSACTION_HANDLER_MASTER(backlight_handlers)
404# define TRANSACTIONS_BACKLIGHT_SLAVE() TRANSACTION_HANDLER_SLAVE(backlight_handlers)
405# define TRANSACTIONS_BACKLIGHT_REGISTRATIONS [PUT_BACKLIGHT] = trans_initiator2target_initializer(backlight_level),
406
407#else // BACKLIGHT_ENABLE
408
409# define TRANSACTIONS_BACKLIGHT_MASTER()
410# define TRANSACTIONS_BACKLIGHT_SLAVE()
411# define TRANSACTIONS_BACKLIGHT_REGISTRATIONS
412
413#endif // BACKLIGHT_ENABLE
414
415////////////////////////////////////////////////////
416// RGBLIGHT
417
418#if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
419
420static bool rgblight_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
421 static uint32_t last_update = 0;
422 rgblight_syncinfo_t rgblight_sync;
423 rgblight_get_syncinfo(&rgblight_sync);
424 if (send_if_condition(PUT_RGBLIGHT, &last_update, (rgblight_sync.status.change_flags != 0), &rgblight_sync, sizeof(rgblight_sync))) {
425 rgblight_clear_change_flags();
426 } else {
427 return false;
428 }
429 return true;
430}
431
432static void rgblight_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
433 // Update the RGB with the new data
434 if (split_shmem->rgblight_sync.status.change_flags != 0) {
435 rgblight_update_sync(&split_shmem->rgblight_sync, false);
436 split_shmem->rgblight_sync.status.change_flags = 0;
437 }
438}
439
440# define TRANSACTIONS_RGBLIGHT_MASTER() TRANSACTION_HANDLER_MASTER(rgblight_handlers)
441# define TRANSACTIONS_RGBLIGHT_SLAVE() TRANSACTION_HANDLER_SLAVE(rgblight_handlers)
442# define TRANSACTIONS_RGBLIGHT_REGISTRATIONS [PUT_RGBLIGHT] = trans_initiator2target_initializer(rgblight_sync),
443
444#else // defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
445
446# define TRANSACTIONS_RGBLIGHT_MASTER()
447# define TRANSACTIONS_RGBLIGHT_SLAVE()
448# define TRANSACTIONS_RGBLIGHT_REGISTRATIONS
449
450#endif // defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
451
452////////////////////////////////////////////////////
453// LED Matrix
454
455#if defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT)
456
457static bool led_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
458 static uint32_t last_update = 0;
459 led_matrix_sync_t led_matrix_sync;
460 memcpy(&led_matrix_sync.led_matrix, &led_matrix_eeconfig, sizeof(led_eeconfig_t));
461 led_matrix_sync.led_suspend_state = led_matrix_get_suspend_state();
462 return send_if_data_mismatch(PUT_LED_MATRIX, &last_update, &led_matrix_sync, &split_shmem->led_matrix_sync, sizeof(led_matrix_sync));
463}
464
465static void led_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
466 memcpy(&led_matrix_eeconfig, &split_shmem->led_matrix_sync.led_matrix, sizeof(led_eeconfig_t));
467 led_matrix_set_suspend_state(split_shmem->led_matrix_sync.led_suspend_state);
468}
469
470# define TRANSACTIONS_LED_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(led_matrix_handlers)
471# define TRANSACTIONS_LED_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE(led_matrix_handlers)
472# define TRANSACTIONS_LED_MATRIX_REGISTRATIONS [PUT_LED_MATRIX] = trans_initiator2target_initializer(led_matrix_sync),
473
474#else // defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT)
475
476# define TRANSACTIONS_LED_MATRIX_MASTER()
477# define TRANSACTIONS_LED_MATRIX_SLAVE()
478# define TRANSACTIONS_LED_MATRIX_REGISTRATIONS
479
480#endif // defined(LED_MATRIX_ENABLE) && defined(LED_MATRIX_SPLIT)
481
482////////////////////////////////////////////////////
483// RGB Matrix
484
485#if defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT)
486
487static bool rgb_matrix_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
488 static uint32_t last_update = 0;
489 rgb_matrix_sync_t rgb_matrix_sync;
490 memcpy(&rgb_matrix_sync.rgb_matrix, &rgb_matrix_config, sizeof(rgb_config_t));
491 rgb_matrix_sync.rgb_suspend_state = rgb_matrix_get_suspend_state();
492 return send_if_data_mismatch(PUT_RGB_MATRIX, &last_update, &rgb_matrix_sync, &split_shmem->rgb_matrix_sync, sizeof(rgb_matrix_sync));
493}
494
495static void rgb_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
496 memcpy(&rgb_matrix_config, &split_shmem->rgb_matrix_sync.rgb_matrix, sizeof(rgb_config_t));
497 rgb_matrix_set_suspend_state(split_shmem->rgb_matrix_sync.rgb_suspend_state);
498}
499
500# define TRANSACTIONS_RGB_MATRIX_MASTER() TRANSACTION_HANDLER_MASTER(rgb_matrix_handlers)
501# define TRANSACTIONS_RGB_MATRIX_SLAVE() TRANSACTION_HANDLER_SLAVE(rgb_matrix_handlers)
502# define TRANSACTIONS_RGB_MATRIX_REGISTRATIONS [PUT_RGB_MATRIX] = trans_initiator2target_initializer(rgb_matrix_sync),
503
504#else // defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT)
505
506# define TRANSACTIONS_RGB_MATRIX_MASTER()
507# define TRANSACTIONS_RGB_MATRIX_SLAVE()
508# define TRANSACTIONS_RGB_MATRIX_REGISTRATIONS
509
510#endif // defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_SPLIT)
511
512////////////////////////////////////////////////////
513// WPM
514
515#if defined(WPM_ENABLE) && defined(SPLIT_WPM_ENABLE)
516
517static bool wpm_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
518 static uint32_t last_update = 0;
519 uint8_t current_wpm = get_current_wpm();
520 return send_if_condition(PUT_WPM, &last_update, (current_wpm != split_shmem->current_wpm), &current_wpm, sizeof(current_wpm));
521}
522
523static void wpm_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { set_current_wpm(split_shmem->current_wpm); }
524
525# define TRANSACTIONS_WPM_MASTER() TRANSACTION_HANDLER_MASTER(wpm_handlers)
526# define TRANSACTIONS_WPM_SLAVE() TRANSACTION_HANDLER_SLAVE(wpm_handlers)
527# define TRANSACTIONS_WPM_REGISTRATIONS [PUT_WPM] = trans_initiator2target_initializer(current_wpm),
528
529#else // defined(WPM_ENABLE) && defined(SPLIT_WPM_ENABLE)
530
531# define TRANSACTIONS_WPM_MASTER()
532# define TRANSACTIONS_WPM_SLAVE()
533# define TRANSACTIONS_WPM_REGISTRATIONS
534
535#endif // defined(WPM_ENABLE) && defined(SPLIT_WPM_ENABLE)
536
537////////////////////////////////////////////////////
538
539uint8_t dummy;
540split_transaction_desc_t split_transaction_table[NUM_TOTAL_TRANSACTIONS] = {
541 // Set defaults
542 [0 ...(NUM_TOTAL_TRANSACTIONS - 1)] = {NULL, 0, 0, 0, 0, 0},
543
544#ifdef USE_I2C
545 [I2C_EXECUTE_CALLBACK] = trans_initiator2target_initializer(transaction_id),
546#endif // USE_I2C
547
548 // clang-format off
549 TRANSACTIONS_SLAVE_MATRIX_REGISTRATIONS
550 TRANSACTIONS_MASTER_MATRIX_REGISTRATIONS
551 TRANSACTIONS_ENCODERS_REGISTRATIONS
552 TRANSACTIONS_SYNC_TIMER_REGISTRATIONS
553 TRANSACTIONS_LAYER_STATE_REGISTRATIONS
554 TRANSACTIONS_LED_STATE_REGISTRATIONS
555 TRANSACTIONS_MODS_REGISTRATIONS
556 TRANSACTIONS_BACKLIGHT_REGISTRATIONS
557 TRANSACTIONS_RGBLIGHT_REGISTRATIONS
558 TRANSACTIONS_LED_MATRIX_REGISTRATIONS
559 TRANSACTIONS_RGB_MATRIX_REGISTRATIONS
560 TRANSACTIONS_WPM_REGISTRATIONS
561// clang-format on
562
563#if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
564 [PUT_RPC_INFO] = trans_initiator2target_initializer_cb(rpc_info, slave_rpc_info_callback),
565 [PUT_RPC_REQ_DATA] = trans_initiator2target_initializer(rpc_m2s_buffer),
566 [EXECUTE_RPC] = trans_initiator2target_initializer_cb(rpc_info.transaction_id, slave_rpc_exec_callback),
567 [GET_RPC_RESP_DATA] = trans_target2initiator_initializer(rpc_s2m_buffer),
568#endif // defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
569};
570
571bool transactions_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
572 bool okay = true;
573 TRANSACTIONS_SLAVE_MATRIX_MASTER();
574 TRANSACTIONS_MASTER_MATRIX_MASTER();
575 TRANSACTIONS_ENCODERS_MASTER();
576 TRANSACTIONS_SYNC_TIMER_MASTER();
577 TRANSACTIONS_LAYER_STATE_MASTER();
578 TRANSACTIONS_LED_STATE_MASTER();
579 TRANSACTIONS_MODS_MASTER();
580 TRANSACTIONS_BACKLIGHT_MASTER();
581 TRANSACTIONS_RGBLIGHT_MASTER();
582 TRANSACTIONS_LED_MATRIX_MASTER();
583 TRANSACTIONS_RGB_MATRIX_MASTER();
584 TRANSACTIONS_WPM_MASTER();
585 return okay;
586}
587
588void transactions_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
589 TRANSACTIONS_SLAVE_MATRIX_SLAVE();
590 TRANSACTIONS_MASTER_MATRIX_SLAVE();
591 TRANSACTIONS_ENCODERS_SLAVE();
592 TRANSACTIONS_SYNC_TIMER_SLAVE();
593 TRANSACTIONS_LAYER_STATE_SLAVE();
594 TRANSACTIONS_LED_STATE_SLAVE();
595 TRANSACTIONS_MODS_SLAVE();
596 TRANSACTIONS_BACKLIGHT_SLAVE();
597 TRANSACTIONS_RGBLIGHT_SLAVE();
598 TRANSACTIONS_LED_MATRIX_SLAVE();
599 TRANSACTIONS_RGB_MATRIX_SLAVE();
600 TRANSACTIONS_WPM_SLAVE();
601}
602
603#if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
604
605void transaction_register_rpc(int8_t transaction_id, slave_callback_t callback) {
606 // Prevent invoking RPC on QMK core sync data
607 if (transaction_id <= GET_RPC_RESP_DATA) return;
608
609 // Set the callback
610 split_transaction_table[transaction_id].slave_callback = callback;
611 split_transaction_table[transaction_id].initiator2target_offset = offsetof(split_shared_memory_t, rpc_m2s_buffer);
612 split_transaction_table[transaction_id].target2initiator_offset = offsetof(split_shared_memory_t, rpc_s2m_buffer);
613}
614
615bool transaction_rpc_exec(int8_t transaction_id, uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) {
616 // Prevent invoking RPC on QMK core sync data
617 if (transaction_id <= GET_RPC_RESP_DATA) return false;
618 // Prevent sizing issues
619 if (initiator2target_buffer_size > RPC_M2S_BUFFER_SIZE) return false;
620 if (target2initiator_buffer_size > RPC_S2M_BUFFER_SIZE) return false;
621
622 // Prepare the metadata block
623 rpc_sync_info_t info = {.transaction_id = transaction_id, .m2s_length = initiator2target_buffer_size, .s2m_length = target2initiator_buffer_size};
624
625 // Make sure the local side knows that we're not sending the full block of data
626 split_transaction_table[PUT_RPC_REQ_DATA].initiator2target_buffer_size = initiator2target_buffer_size;
627 split_transaction_table[GET_RPC_RESP_DATA].target2initiator_buffer_size = target2initiator_buffer_size;
628
629 // Run through the sequence:
630 // * set the transaction ID and lengths
631 // * send the request data
632 // * execute RPC callback
633 // * retrieve the response data
634 if (!transport_write(PUT_RPC_INFO, &info, sizeof(info))) {
635 return false;
636 }
637 if (!transport_write(PUT_RPC_REQ_DATA, initiator2target_buffer, initiator2target_buffer_size)) {
638 return false;
639 }
640 if (!transport_write(EXECUTE_RPC, &transaction_id, sizeof(transaction_id))) {
641 return false;
642 }
643 if (!transport_read(GET_RPC_RESP_DATA, target2initiator_buffer, target2initiator_buffer_size)) {
644 return false;
645 }
646 return true;
647}
648
649void slave_rpc_info_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) {
650 // The RPC info block contains the intended transaction ID, as well as the sizes for both inbound and outbound data.
651 // Ignore the args -- the `split_shmem` already has the info, we just need to act upon it.
652 // We must keep the `split_transaction_table` non-const, so that it is able to be modified at runtime.
653
654 split_transaction_table[PUT_RPC_REQ_DATA].initiator2target_buffer_size = split_shmem->rpc_info.m2s_length;
655 split_transaction_table[GET_RPC_RESP_DATA].target2initiator_buffer_size = split_shmem->rpc_info.s2m_length;
656}
657
658void slave_rpc_exec_callback(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) {
659 // We can assume that the buffer lengths are correctly set, now, given that sequentially the rpc_info callback was already executed.
660 // Go through the rpc_info and execute _that_ transaction's callback, with the scratch buffers as inputs.
661 int8_t transaction_id = split_shmem->rpc_info.transaction_id;
662 if (transaction_id < NUM_TOTAL_TRANSACTIONS) {
663 split_transaction_desc_t *trans = &split_transaction_table[transaction_id];
664 if (trans->slave_callback) {
665 trans->slave_callback(split_shmem->rpc_info.m2s_length, split_shmem->rpc_m2s_buffer, split_shmem->rpc_info.s2m_length, split_shmem->rpc_s2m_buffer);
666 }
667 }
668}
669
670#endif // defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)