diff options
Diffstat (limited to 'lib/lib8tion/math8.h')
| -rw-r--r-- | lib/lib8tion/math8.h | 552 |
1 files changed, 552 insertions, 0 deletions
diff --git a/lib/lib8tion/math8.h b/lib/lib8tion/math8.h new file mode 100644 index 000000000..8c6b6c227 --- /dev/null +++ b/lib/lib8tion/math8.h | |||
| @@ -0,0 +1,552 @@ | |||
| 1 | #ifndef __INC_LIB8TION_MATH_H | ||
| 2 | #define __INC_LIB8TION_MATH_H | ||
| 3 | |||
| 4 | #include "scale8.h" | ||
| 5 | |||
| 6 | ///@ingroup lib8tion | ||
| 7 | |||
| 8 | ///@defgroup Math Basic math operations | ||
| 9 | /// Fast, efficient 8-bit math functions specifically | ||
| 10 | /// designed for high-performance LED programming. | ||
| 11 | /// | ||
| 12 | /// Because of the AVR(Arduino) and ARM assembly language | ||
| 13 | /// implementations provided, using these functions often | ||
| 14 | /// results in smaller and faster code than the equivalent | ||
| 15 | /// program using plain "C" arithmetic and logic. | ||
| 16 | ///@{ | ||
| 17 | |||
| 18 | |||
| 19 | /// add one byte to another, saturating at 0xFF | ||
| 20 | /// @param i - first byte to add | ||
| 21 | /// @param j - second byte to add | ||
| 22 | /// @returns the sum of i & j, capped at 0xFF | ||
| 23 | LIB8STATIC_ALWAYS_INLINE uint8_t qadd8( uint8_t i, uint8_t j) | ||
| 24 | { | ||
| 25 | #if QADD8_C == 1 | ||
| 26 | uint16_t t = i + j; | ||
| 27 | if (t > 255) t = 255; | ||
| 28 | return t; | ||
| 29 | #elif QADD8_AVRASM == 1 | ||
| 30 | asm volatile( | ||
| 31 | /* First, add j to i, conditioning the C flag */ | ||
| 32 | "add %0, %1 \n\t" | ||
| 33 | |||
| 34 | /* Now test the C flag. | ||
| 35 | If C is clear, we branch around a load of 0xFF into i. | ||
| 36 | If C is set, we go ahead and load 0xFF into i. | ||
| 37 | */ | ||
| 38 | "brcc L_%= \n\t" | ||
| 39 | "ldi %0, 0xFF \n\t" | ||
| 40 | "L_%=: " | ||
| 41 | : "+a" (i) | ||
| 42 | : "a" (j) ); | ||
| 43 | return i; | ||
| 44 | #elif QADD8_ARM_DSP_ASM == 1 | ||
| 45 | asm volatile( "uqadd8 %0, %0, %1" : "+r" (i) : "r" (j)); | ||
| 46 | return i; | ||
| 47 | #else | ||
| 48 | #error "No implementation for qadd8 available." | ||
| 49 | #endif | ||
| 50 | } | ||
| 51 | |||
| 52 | /// Add one byte to another, saturating at 0x7F | ||
| 53 | /// @param i - first byte to add | ||
| 54 | /// @param j - second byte to add | ||
| 55 | /// @returns the sum of i & j, capped at 0xFF | ||
| 56 | LIB8STATIC_ALWAYS_INLINE int8_t qadd7( int8_t i, int8_t j) | ||
| 57 | { | ||
| 58 | #if QADD7_C == 1 | ||
| 59 | int16_t t = i + j; | ||
| 60 | if (t > 127) t = 127; | ||
| 61 | return t; | ||
| 62 | #elif QADD7_AVRASM == 1 | ||
| 63 | asm volatile( | ||
| 64 | /* First, add j to i, conditioning the V flag */ | ||
| 65 | "add %0, %1 \n\t" | ||
| 66 | |||
| 67 | /* Now test the V flag. | ||
| 68 | If V is clear, we branch around a load of 0x7F into i. | ||
| 69 | If V is set, we go ahead and load 0x7F into i. | ||
| 70 | */ | ||
| 71 | "brvc L_%= \n\t" | ||
| 72 | "ldi %0, 0x7F \n\t" | ||
| 73 | "L_%=: " | ||
| 74 | : "+a" (i) | ||
| 75 | : "a" (j) ); | ||
| 76 | |||
| 77 | return i; | ||
| 78 | #elif QADD7_ARM_DSP_ASM == 1 | ||
| 79 | asm volatile( "qadd8 %0, %0, %1" : "+r" (i) : "r" (j)); | ||
| 80 | return i; | ||
| 81 | #else | ||
| 82 | #error "No implementation for qadd7 available." | ||
| 83 | #endif | ||
| 84 | } | ||
| 85 | |||
| 86 | /// subtract one byte from another, saturating at 0x00 | ||
| 87 | /// @returns i - j with a floor of 0 | ||
| 88 | LIB8STATIC_ALWAYS_INLINE uint8_t qsub8( uint8_t i, uint8_t j) | ||
| 89 | { | ||
| 90 | #if QSUB8_C == 1 | ||
| 91 | int16_t t = i - j; | ||
| 92 | if (t < 0) t = 0; | ||
| 93 | return t; | ||
| 94 | #elif QSUB8_AVRASM == 1 | ||
| 95 | |||
| 96 | asm volatile( | ||
| 97 | /* First, subtract j from i, conditioning the C flag */ | ||
| 98 | "sub %0, %1 \n\t" | ||
| 99 | |||
| 100 | /* Now test the C flag. | ||
| 101 | If C is clear, we branch around a load of 0x00 into i. | ||
| 102 | If C is set, we go ahead and load 0x00 into i. | ||
| 103 | */ | ||
| 104 | "brcc L_%= \n\t" | ||
| 105 | "ldi %0, 0x00 \n\t" | ||
| 106 | "L_%=: " | ||
| 107 | : "+a" (i) | ||
| 108 | : "a" (j) ); | ||
| 109 | |||
| 110 | return i; | ||
| 111 | #else | ||
| 112 | #error "No implementation for qsub8 available." | ||
| 113 | #endif | ||
| 114 | } | ||
| 115 | |||
| 116 | /// add one byte to another, with one byte result | ||
| 117 | LIB8STATIC_ALWAYS_INLINE uint8_t add8( uint8_t i, uint8_t j) | ||
| 118 | { | ||
| 119 | #if ADD8_C == 1 | ||
| 120 | uint16_t t = i + j; | ||
| 121 | return t; | ||
| 122 | #elif ADD8_AVRASM == 1 | ||
| 123 | // Add j to i, period. | ||
| 124 | asm volatile( "add %0, %1" : "+a" (i) : "a" (j)); | ||
| 125 | return i; | ||
| 126 | #else | ||
| 127 | #error "No implementation for add8 available." | ||
| 128 | #endif | ||
| 129 | } | ||
| 130 | |||
| 131 | /// add one byte to another, with one byte result | ||
| 132 | LIB8STATIC_ALWAYS_INLINE uint16_t add8to16( uint8_t i, uint16_t j) | ||
| 133 | { | ||
| 134 | #if ADD8_C == 1 | ||
| 135 | uint16_t t = i + j; | ||
| 136 | return t; | ||
| 137 | #elif ADD8_AVRASM == 1 | ||
| 138 | // Add i(one byte) to j(two bytes) | ||
| 139 | asm volatile( "add %A[j], %[i] \n\t" | ||
| 140 | "adc %B[j], __zero_reg__ \n\t" | ||
| 141 | : [j] "+a" (j) | ||
| 142 | : [i] "a" (i) | ||
| 143 | ); | ||
| 144 | return i; | ||
| 145 | #else | ||
| 146 | #error "No implementation for add8to16 available." | ||
| 147 | #endif | ||
| 148 | } | ||
| 149 | |||
| 150 | |||
| 151 | /// subtract one byte from another, 8-bit result | ||
| 152 | LIB8STATIC_ALWAYS_INLINE uint8_t sub8( uint8_t i, uint8_t j) | ||
| 153 | { | ||
| 154 | #if SUB8_C == 1 | ||
| 155 | int16_t t = i - j; | ||
| 156 | return t; | ||
| 157 | #elif SUB8_AVRASM == 1 | ||
| 158 | // Subtract j from i, period. | ||
| 159 | asm volatile( "sub %0, %1" : "+a" (i) : "a" (j)); | ||
| 160 | return i; | ||
| 161 | #else | ||
| 162 | #error "No implementation for sub8 available." | ||
| 163 | #endif | ||
| 164 | } | ||
| 165 | |||
| 166 | /// Calculate an integer average of two unsigned | ||
| 167 | /// 8-bit integer values (uint8_t). | ||
| 168 | /// Fractional results are rounded down, e.g. avg8(20,41) = 30 | ||
| 169 | LIB8STATIC_ALWAYS_INLINE uint8_t avg8( uint8_t i, uint8_t j) | ||
| 170 | { | ||
| 171 | #if AVG8_C == 1 | ||
| 172 | return (i + j) >> 1; | ||
| 173 | #elif AVG8_AVRASM == 1 | ||
| 174 | asm volatile( | ||
| 175 | /* First, add j to i, 9th bit overflows into C flag */ | ||
| 176 | "add %0, %1 \n\t" | ||
| 177 | /* Divide by two, moving C flag into high 8th bit */ | ||
| 178 | "ror %0 \n\t" | ||
| 179 | : "+a" (i) | ||
| 180 | : "a" (j) ); | ||
| 181 | return i; | ||
| 182 | #else | ||
| 183 | #error "No implementation for avg8 available." | ||
| 184 | #endif | ||
| 185 | } | ||
| 186 | |||
| 187 | /// Calculate an integer average of two unsigned | ||
| 188 | /// 16-bit integer values (uint16_t). | ||
| 189 | /// Fractional results are rounded down, e.g. avg16(20,41) = 30 | ||
| 190 | LIB8STATIC_ALWAYS_INLINE uint16_t avg16( uint16_t i, uint16_t j) | ||
| 191 | { | ||
| 192 | #if AVG16_C == 1 | ||
| 193 | return (uint32_t)((uint32_t)(i) + (uint32_t)(j)) >> 1; | ||
| 194 | #elif AVG16_AVRASM == 1 | ||
| 195 | asm volatile( | ||
| 196 | /* First, add jLo (heh) to iLo, 9th bit overflows into C flag */ | ||
| 197 | "add %A[i], %A[j] \n\t" | ||
| 198 | /* Now, add C + jHi to iHi, 17th bit overflows into C flag */ | ||
| 199 | "adc %B[i], %B[j] \n\t" | ||
| 200 | /* Divide iHi by two, moving C flag into high 16th bit, old 9th bit now in C */ | ||
| 201 | "ror %B[i] \n\t" | ||
| 202 | /* Divide iLo by two, moving C flag into high 8th bit */ | ||
| 203 | "ror %A[i] \n\t" | ||
| 204 | : [i] "+a" (i) | ||
| 205 | : [j] "a" (j) ); | ||
| 206 | return i; | ||
| 207 | #else | ||
| 208 | #error "No implementation for avg16 available." | ||
| 209 | #endif | ||
| 210 | } | ||
| 211 | |||
| 212 | |||
| 213 | /// Calculate an integer average of two signed 7-bit | ||
| 214 | /// integers (int8_t) | ||
| 215 | /// If the first argument is even, result is rounded down. | ||
| 216 | /// If the first argument is odd, result is result up. | ||
| 217 | LIB8STATIC_ALWAYS_INLINE int8_t avg7( int8_t i, int8_t j) | ||
| 218 | { | ||
| 219 | #if AVG7_C == 1 | ||
| 220 | return ((i + j) >> 1) + (i & 0x1); | ||
| 221 | #elif AVG7_AVRASM == 1 | ||
| 222 | asm volatile( | ||
| 223 | "asr %1 \n\t" | ||
| 224 | "asr %0 \n\t" | ||
| 225 | "adc %0, %1 \n\t" | ||
| 226 | : "+a" (i) | ||
| 227 | : "a" (j) ); | ||
| 228 | return i; | ||
| 229 | #else | ||
| 230 | #error "No implementation for avg7 available." | ||
| 231 | #endif | ||
| 232 | } | ||
| 233 | |||
| 234 | /// Calculate an integer average of two signed 15-bit | ||
| 235 | /// integers (int16_t) | ||
| 236 | /// If the first argument is even, result is rounded down. | ||
| 237 | /// If the first argument is odd, result is result up. | ||
| 238 | LIB8STATIC_ALWAYS_INLINE int16_t avg15( int16_t i, int16_t j) | ||
| 239 | { | ||
| 240 | #if AVG15_C == 1 | ||
| 241 | return ((int32_t)((int32_t)(i) + (int32_t)(j)) >> 1) + (i & 0x1); | ||
| 242 | #elif AVG15_AVRASM == 1 | ||
| 243 | asm volatile( | ||
| 244 | /* first divide j by 2, throwing away lowest bit */ | ||
| 245 | "asr %B[j] \n\t" | ||
| 246 | "ror %A[j] \n\t" | ||
| 247 | /* now divide i by 2, with lowest bit going into C */ | ||
| 248 | "asr %B[i] \n\t" | ||
| 249 | "ror %A[i] \n\t" | ||
| 250 | /* add j + C to i */ | ||
| 251 | "adc %A[i], %A[j] \n\t" | ||
| 252 | "adc %B[i], %B[j] \n\t" | ||
| 253 | : [i] "+a" (i) | ||
| 254 | : [j] "a" (j) ); | ||
| 255 | return i; | ||
| 256 | #else | ||
| 257 | #error "No implementation for avg15 available." | ||
| 258 | #endif | ||
| 259 | } | ||
| 260 | |||
| 261 | |||
| 262 | /// Calculate the remainder of one unsigned 8-bit | ||
| 263 | /// value divided by anoter, aka A % M. | ||
| 264 | /// Implemented by repeated subtraction, which is | ||
| 265 | /// very compact, and very fast if A is 'probably' | ||
| 266 | /// less than M. If A is a large multiple of M, | ||
| 267 | /// the loop has to execute multiple times. However, | ||
| 268 | /// even in that case, the loop is only two | ||
| 269 | /// instructions long on AVR, i.e., quick. | ||
| 270 | LIB8STATIC_ALWAYS_INLINE uint8_t mod8( uint8_t a, uint8_t m) | ||
| 271 | { | ||
| 272 | #if defined(__AVR__) | ||
| 273 | asm volatile ( | ||
| 274 | "L_%=: sub %[a],%[m] \n\t" | ||
| 275 | " brcc L_%= \n\t" | ||
| 276 | " add %[a],%[m] \n\t" | ||
| 277 | : [a] "+r" (a) | ||
| 278 | : [m] "r" (m) | ||
| 279 | ); | ||
| 280 | #else | ||
| 281 | while( a >= m) a -= m; | ||
| 282 | #endif | ||
| 283 | return a; | ||
| 284 | } | ||
| 285 | |||
| 286 | /// Add two numbers, and calculate the modulo | ||
| 287 | /// of the sum and a third number, M. | ||
| 288 | /// In other words, it returns (A+B) % M. | ||
| 289 | /// It is designed as a compact mechanism for | ||
| 290 | /// incrementing a 'mode' switch and wrapping | ||
| 291 | /// around back to 'mode 0' when the switch | ||
| 292 | /// goes past the end of the available range. | ||
| 293 | /// e.g. if you have seven modes, this switches | ||
| 294 | /// to the next one and wraps around if needed: | ||
| 295 | /// mode = addmod8( mode, 1, 7); | ||
| 296 | ///LIB8STATIC_ALWAYS_INLINESee 'mod8' for notes on performance. | ||
| 297 | LIB8STATIC uint8_t addmod8( uint8_t a, uint8_t b, uint8_t m) | ||
| 298 | { | ||
| 299 | #if defined(__AVR__) | ||
| 300 | asm volatile ( | ||
| 301 | " add %[a],%[b] \n\t" | ||
| 302 | "L_%=: sub %[a],%[m] \n\t" | ||
| 303 | " brcc L_%= \n\t" | ||
| 304 | " add %[a],%[m] \n\t" | ||
| 305 | : [a] "+r" (a) | ||
| 306 | : [b] "r" (b), [m] "r" (m) | ||
| 307 | ); | ||
| 308 | #else | ||
| 309 | a += b; | ||
| 310 | while( a >= m) a -= m; | ||
| 311 | #endif | ||
| 312 | return a; | ||
| 313 | } | ||
| 314 | |||
| 315 | /// Subtract two numbers, and calculate the modulo | ||
| 316 | /// of the difference and a third number, M. | ||
| 317 | /// In other words, it returns (A-B) % M. | ||
| 318 | /// It is designed as a compact mechanism for | ||
| 319 | /// incrementing a 'mode' switch and wrapping | ||
| 320 | /// around back to 'mode 0' when the switch | ||
| 321 | /// goes past the end of the available range. | ||
| 322 | /// e.g. if you have seven modes, this switches | ||
| 323 | /// to the next one and wraps around if needed: | ||
| 324 | /// mode = addmod8( mode, 1, 7); | ||
| 325 | ///LIB8STATIC_ALWAYS_INLINESee 'mod8' for notes on performance. | ||
| 326 | LIB8STATIC uint8_t submod8( uint8_t a, uint8_t b, uint8_t m) | ||
| 327 | { | ||
| 328 | #if defined(__AVR__) | ||
| 329 | asm volatile ( | ||
| 330 | " sub %[a],%[b] \n\t" | ||
| 331 | "L_%=: sub %[a],%[m] \n\t" | ||
| 332 | " brcc L_%= \n\t" | ||
| 333 | " add %[a],%[m] \n\t" | ||
| 334 | : [a] "+r" (a) | ||
| 335 | : [b] "r" (b), [m] "r" (m) | ||
| 336 | ); | ||
| 337 | #else | ||
| 338 | a -= b; | ||
| 339 | while( a >= m) a -= m; | ||
| 340 | #endif | ||
| 341 | return a; | ||
| 342 | } | ||
| 343 | |||
| 344 | /// 8x8 bit multiplication, with 8 bit result | ||
| 345 | LIB8STATIC_ALWAYS_INLINE uint8_t mul8( uint8_t i, uint8_t j) | ||
| 346 | { | ||
| 347 | #if MUL8_C == 1 | ||
| 348 | return ((uint16_t)i * (uint16_t)(j) ) & 0xFF; | ||
| 349 | #elif MUL8_AVRASM == 1 | ||
| 350 | asm volatile( | ||
| 351 | /* Multiply 8-bit i * 8-bit j, giving 16-bit r1,r0 */ | ||
| 352 | "mul %0, %1 \n\t" | ||
| 353 | /* Extract the LOW 8-bits (r0) */ | ||
| 354 | "mov %0, r0 \n\t" | ||
| 355 | /* Restore r1 to "0"; it's expected to always be that */ | ||
| 356 | "clr __zero_reg__ \n\t" | ||
| 357 | : "+a" (i) | ||
| 358 | : "a" (j) | ||
| 359 | : "r0", "r1"); | ||
| 360 | |||
| 361 | return i; | ||
| 362 | #else | ||
| 363 | #error "No implementation for mul8 available." | ||
| 364 | #endif | ||
| 365 | } | ||
| 366 | |||
| 367 | |||
| 368 | /// saturating 8x8 bit multiplication, with 8 bit result | ||
| 369 | /// @returns the product of i * j, capping at 0xFF | ||
| 370 | LIB8STATIC_ALWAYS_INLINE uint8_t qmul8( uint8_t i, uint8_t j) | ||
| 371 | { | ||
| 372 | #if QMUL8_C == 1 | ||
| 373 | int p = ((uint16_t)i * (uint16_t)(j) ); | ||
| 374 | if( p > 255) p = 255; | ||
| 375 | return p; | ||
| 376 | #elif QMUL8_AVRASM == 1 | ||
| 377 | asm volatile( | ||
| 378 | /* Multiply 8-bit i * 8-bit j, giving 16-bit r1,r0 */ | ||
| 379 | " mul %0, %1 \n\t" | ||
| 380 | /* If high byte of result is zero, all is well. */ | ||
| 381 | " tst r1 \n\t" | ||
| 382 | " breq Lnospill_%= \n\t" | ||
| 383 | /* If high byte of result > 0, saturate low byte to 0xFF */ | ||
| 384 | " ldi %0,0xFF \n\t" | ||
| 385 | " rjmp Ldone_%= \n\t" | ||
| 386 | "Lnospill_%=: \n\t" | ||
| 387 | /* Extract the LOW 8-bits (r0) */ | ||
| 388 | " mov %0, r0 \n\t" | ||
| 389 | "Ldone_%=: \n\t" | ||
| 390 | /* Restore r1 to "0"; it's expected to always be that */ | ||
| 391 | " clr __zero_reg__ \n\t" | ||
| 392 | : "+a" (i) | ||
| 393 | : "a" (j) | ||
| 394 | : "r0", "r1"); | ||
| 395 | |||
| 396 | return i; | ||
| 397 | #else | ||
| 398 | #error "No implementation for qmul8 available." | ||
| 399 | #endif | ||
| 400 | } | ||
| 401 | |||
| 402 | |||
| 403 | /// take abs() of a signed 8-bit uint8_t | ||
| 404 | LIB8STATIC_ALWAYS_INLINE int8_t abs8( int8_t i) | ||
| 405 | { | ||
| 406 | #if ABS8_C == 1 | ||
| 407 | if( i < 0) i = -i; | ||
| 408 | return i; | ||
| 409 | #elif ABS8_AVRASM == 1 | ||
| 410 | |||
| 411 | |||
| 412 | asm volatile( | ||
| 413 | /* First, check the high bit, and prepare to skip if it's clear */ | ||
| 414 | "sbrc %0, 7 \n" | ||
| 415 | |||
| 416 | /* Negate the value */ | ||
| 417 | "neg %0 \n" | ||
| 418 | |||
| 419 | : "+r" (i) : "r" (i) ); | ||
| 420 | return i; | ||
| 421 | #else | ||
| 422 | #error "No implementation for abs8 available." | ||
| 423 | #endif | ||
| 424 | } | ||
| 425 | |||
| 426 | /// square root for 16-bit integers | ||
| 427 | /// About three times faster and five times smaller | ||
| 428 | /// than Arduino's general sqrt on AVR. | ||
| 429 | LIB8STATIC uint8_t sqrt16(uint16_t x) | ||
| 430 | { | ||
| 431 | if( x <= 1) { | ||
| 432 | return x; | ||
| 433 | } | ||
| 434 | |||
| 435 | uint8_t low = 1; // lower bound | ||
| 436 | uint8_t hi, mid; | ||
| 437 | |||
| 438 | if( x > 7904) { | ||
| 439 | hi = 255; | ||
| 440 | } else { | ||
| 441 | hi = (x >> 5) + 8; // initial estimate for upper bound | ||
| 442 | } | ||
| 443 | |||
| 444 | do { | ||
| 445 | mid = (low + hi) >> 1; | ||
| 446 | if ((uint16_t)(mid * mid) > x) { | ||
| 447 | hi = mid - 1; | ||
| 448 | } else { | ||
| 449 | if( mid == 255) { | ||
| 450 | return 255; | ||
| 451 | } | ||
| 452 | low = mid + 1; | ||
| 453 | } | ||
| 454 | } while (hi >= low); | ||
| 455 | |||
| 456 | return low - 1; | ||
| 457 | } | ||
| 458 | |||
| 459 | /// blend a variable proproportion(0-255) of one byte to another | ||
| 460 | /// @param a - the starting byte value | ||
| 461 | /// @param b - the byte value to blend toward | ||
| 462 | /// @param amountOfB - the proportion (0-255) of b to blend | ||
| 463 | /// @returns a byte value between a and b, inclusive | ||
| 464 | #if (FASTLED_BLEND_FIXED == 1) | ||
| 465 | LIB8STATIC uint8_t blend8( uint8_t a, uint8_t b, uint8_t amountOfB) | ||
| 466 | { | ||
| 467 | #if BLEND8_C == 1 | ||
| 468 | uint16_t partial; | ||
| 469 | uint8_t result; | ||
| 470 | |||
| 471 | uint8_t amountOfA = 255 - amountOfB; | ||
| 472 | |||
| 473 | partial = (a * amountOfA); | ||
| 474 | #if (FASTLED_SCALE8_FIXED == 1) | ||
| 475 | partial += a; | ||
| 476 | //partial = add8to16( a, partial); | ||
| 477 | #endif | ||
| 478 | |||
| 479 | partial += (b * amountOfB); | ||
| 480 | #if (FASTLED_SCALE8_FIXED == 1) | ||
| 481 | partial += b; | ||
| 482 | //partial = add8to16( b, partial); | ||
| 483 | #endif | ||
| 484 | |||
| 485 | result = partial >> 8; | ||
| 486 | |||
| 487 | return result; | ||
| 488 | |||
| 489 | #elif BLEND8_AVRASM == 1 | ||
| 490 | uint16_t partial; | ||
| 491 | uint8_t result; | ||
| 492 | |||
| 493 | asm volatile ( | ||
| 494 | /* partial = b * amountOfB */ | ||
| 495 | " mul %[b], %[amountOfB] \n\t" | ||
| 496 | " movw %A[partial], r0 \n\t" | ||
| 497 | |||
| 498 | /* amountOfB (aka amountOfA) = 255 - amountOfB */ | ||
| 499 | " com %[amountOfB] \n\t" | ||
| 500 | |||
| 501 | /* partial += a * amountOfB (aka amountOfA) */ | ||
| 502 | " mul %[a], %[amountOfB] \n\t" | ||
| 503 | |||
| 504 | " add %A[partial], r0 \n\t" | ||
| 505 | " adc %B[partial], r1 \n\t" | ||
| 506 | |||
| 507 | " clr __zero_reg__ \n\t" | ||
| 508 | |||
| 509 | #if (FASTLED_SCALE8_FIXED == 1) | ||
| 510 | /* partial += a */ | ||
| 511 | " add %A[partial], %[a] \n\t" | ||
| 512 | " adc %B[partial], __zero_reg__ \n\t" | ||
| 513 | |||
| 514 | // partial += b | ||
| 515 | " add %A[partial], %[b] \n\t" | ||
| 516 | " adc %B[partial], __zero_reg__ \n\t" | ||
| 517 | #endif | ||
| 518 | |||
| 519 | : [partial] "=r" (partial), | ||
| 520 | [amountOfB] "+a" (amountOfB) | ||
| 521 | : [a] "a" (a), | ||
| 522 | [b] "a" (b) | ||
| 523 | : "r0", "r1" | ||
| 524 | ); | ||
| 525 | |||
| 526 | result = partial >> 8; | ||
| 527 | |||
| 528 | return result; | ||
| 529 | |||
| 530 | #else | ||
| 531 | #error "No implementation for blend8 available." | ||
| 532 | #endif | ||
| 533 | } | ||
| 534 | |||
| 535 | #else | ||
| 536 | LIB8STATIC uint8_t blend8( uint8_t a, uint8_t b, uint8_t amountOfB) | ||
| 537 | { | ||
| 538 | // This version loses precision in the integer math | ||
| 539 | // and can actually return results outside of the range | ||
| 540 | // from a to b. Its use is not recommended. | ||
| 541 | uint8_t result; | ||
| 542 | uint8_t amountOfA = 255 - amountOfB; | ||
| 543 | result = scale8_LEAVING_R1_DIRTY( a, amountOfA) | ||
| 544 | + scale8_LEAVING_R1_DIRTY( b, amountOfB); | ||
| 545 | cleanup_R1(); | ||
| 546 | return result; | ||
| 547 | } | ||
| 548 | #endif | ||
| 549 | |||
| 550 | |||
| 551 | ///@} | ||
| 552 | #endif | ||
