diff options
Diffstat (limited to 'quantum/audio/driver_chibios_dac_additive.c')
-rw-r--r-- | quantum/audio/driver_chibios_dac_additive.c | 335 |
1 files changed, 0 insertions, 335 deletions
diff --git a/quantum/audio/driver_chibios_dac_additive.c b/quantum/audio/driver_chibios_dac_additive.c deleted file mode 100644 index db304adb8..000000000 --- a/quantum/audio/driver_chibios_dac_additive.c +++ /dev/null | |||
@@ -1,335 +0,0 @@ | |||
1 | /* Copyright 2016-2019 Jack Humbert | ||
2 | * Copyright 2020 JohSchneider | ||
3 | * | ||
4 | * This program is free software: you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation, either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
16 | */ | ||
17 | |||
18 | #include "audio.h" | ||
19 | #include <ch.h> | ||
20 | #include <hal.h> | ||
21 | |||
22 | /* | ||
23 | Audio Driver: DAC | ||
24 | |||
25 | which utilizes the dac unit many STM32 are equipped with, to output a modulated waveform from samples stored in the dac_buffer_* array who are passed to the hardware through DMA | ||
26 | |||
27 | it is also possible to have a custom sample-LUT by implementing/overriding 'dac_value_generate' | ||
28 | |||
29 | this driver allows for multiple simultaneous tones to be played through one single channel by doing additive wave-synthesis | ||
30 | */ | ||
31 | |||
32 | #if !defined(AUDIO_PIN) | ||
33 | # error "Audio feature enabled, but no suitable pin selected as AUDIO_PIN - see docs/feature_audio under 'ARM (DAC additive)' for available options." | ||
34 | #endif | ||
35 | #if defined(AUDIO_PIN_ALT) && !defined(AUDIO_PIN_ALT_AS_NEGATIVE) | ||
36 | # pragma message "Audio feature: AUDIO_PIN_ALT set, but not AUDIO_PIN_ALT_AS_NEGATIVE - pin will be left unused; audio might still work though." | ||
37 | #endif | ||
38 | |||
39 | #if !defined(AUDIO_PIN_ALT) | ||
40 | // no ALT pin defined is valid, but the c-ifs below need some value set | ||
41 | # define AUDIO_PIN_ALT PAL_NOLINE | ||
42 | #endif | ||
43 | |||
44 | #if !defined(AUDIO_DAC_SAMPLE_WAVEFORM_SINE) && !defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE) && !defined(AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE) && !defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID) | ||
45 | # define AUDIO_DAC_SAMPLE_WAVEFORM_SINE | ||
46 | #endif | ||
47 | |||
48 | #ifdef AUDIO_DAC_SAMPLE_WAVEFORM_SINE | ||
49 | /* one full sine wave over [0,2*pi], but shifted up one amplitude and left pi/4; for the samples to start at 0 | ||
50 | */ | ||
51 | static const dacsample_t dac_buffer_sine[AUDIO_DAC_BUFFER_SIZE] = { | ||
52 | // 256 values, max 4095 | ||
53 | 0x0, 0x1, 0x2, 0x6, 0xa, 0xf, 0x16, 0x1e, 0x27, 0x32, 0x3d, 0x4a, 0x58, 0x67, 0x78, 0x89, 0x9c, 0xb0, 0xc5, 0xdb, 0xf2, 0x10a, 0x123, 0x13e, 0x159, 0x175, 0x193, 0x1b1, 0x1d1, 0x1f1, 0x212, 0x235, 0x258, 0x27c, 0x2a0, 0x2c6, 0x2ed, 0x314, 0x33c, 0x365, 0x38e, 0x3b8, 0x3e3, 0x40e, 0x43a, 0x467, 0x494, 0x4c2, 0x4f0, 0x51f, 0x54e, 0x57d, 0x5ad, 0x5dd, 0x60e, 0x63f, 0x670, 0x6a1, 0x6d3, 0x705, 0x737, 0x769, 0x79b, 0x7cd, 0x800, 0x832, 0x864, 0x896, 0x8c8, 0x8fa, 0x92c, 0x95e, 0x98f, 0x9c0, 0x9f1, 0xa22, 0xa52, 0xa82, 0xab1, 0xae0, 0xb0f, 0xb3d, 0xb6b, 0xb98, 0xbc5, 0xbf1, 0xc1c, 0xc47, 0xc71, 0xc9a, 0xcc3, 0xceb, 0xd12, 0xd39, 0xd5f, 0xd83, 0xda7, 0xdca, 0xded, 0xe0e, 0xe2e, 0xe4e, 0xe6c, 0xe8a, 0xea6, 0xec1, 0xedc, 0xef5, 0xf0d, 0xf24, 0xf3a, 0xf4f, 0xf63, 0xf76, 0xf87, 0xf98, 0xfa7, 0xfb5, 0xfc2, 0xfcd, 0xfd8, 0xfe1, 0xfe9, 0xff0, 0xff5, 0xff9, 0xffd, 0xffe, | ||
54 | 0xfff, 0xffe, 0xffd, 0xff9, 0xff5, 0xff0, 0xfe9, 0xfe1, 0xfd8, 0xfcd, 0xfc2, 0xfb5, 0xfa7, 0xf98, 0xf87, 0xf76, 0xf63, 0xf4f, 0xf3a, 0xf24, 0xf0d, 0xef5, 0xedc, 0xec1, 0xea6, 0xe8a, 0xe6c, 0xe4e, 0xe2e, 0xe0e, 0xded, 0xdca, 0xda7, 0xd83, 0xd5f, 0xd39, 0xd12, 0xceb, 0xcc3, 0xc9a, 0xc71, 0xc47, 0xc1c, 0xbf1, 0xbc5, 0xb98, 0xb6b, 0xb3d, 0xb0f, 0xae0, 0xab1, 0xa82, 0xa52, 0xa22, 0x9f1, 0x9c0, 0x98f, 0x95e, 0x92c, 0x8fa, 0x8c8, 0x896, 0x864, 0x832, 0x800, 0x7cd, 0x79b, 0x769, 0x737, 0x705, 0x6d3, 0x6a1, 0x670, 0x63f, 0x60e, 0x5dd, 0x5ad, 0x57d, 0x54e, 0x51f, 0x4f0, 0x4c2, 0x494, 0x467, 0x43a, 0x40e, 0x3e3, 0x3b8, 0x38e, 0x365, 0x33c, 0x314, 0x2ed, 0x2c6, 0x2a0, 0x27c, 0x258, 0x235, 0x212, 0x1f1, 0x1d1, 0x1b1, 0x193, 0x175, 0x159, 0x13e, 0x123, 0x10a, 0xf2, 0xdb, 0xc5, 0xb0, 0x9c, 0x89, 0x78, 0x67, 0x58, 0x4a, 0x3d, 0x32, 0x27, 0x1e, 0x16, 0xf, 0xa, 0x6, 0x2, 0x1}; | ||
55 | #endif // AUDIO_DAC_SAMPLE_WAVEFORM_SINE | ||
56 | #ifdef AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE | ||
57 | static const dacsample_t dac_buffer_triangle[AUDIO_DAC_BUFFER_SIZE] = { | ||
58 | // 256 values, max 4095 | ||
59 | 0x0, 0x20, 0x40, 0x60, 0x80, 0xa0, 0xc0, 0xe0, 0x100, 0x120, 0x140, 0x160, 0x180, 0x1a0, 0x1c0, 0x1e0, 0x200, 0x220, 0x240, 0x260, 0x280, 0x2a0, 0x2c0, 0x2e0, 0x300, 0x320, 0x340, 0x360, 0x380, 0x3a0, 0x3c0, 0x3e0, 0x400, 0x420, 0x440, 0x460, 0x480, 0x4a0, 0x4c0, 0x4e0, 0x500, 0x520, 0x540, 0x560, 0x580, 0x5a0, 0x5c0, 0x5e0, 0x600, 0x620, 0x640, 0x660, 0x680, 0x6a0, 0x6c0, 0x6e0, 0x700, 0x720, 0x740, 0x760, 0x780, 0x7a0, 0x7c0, 0x7e0, 0x800, 0x81f, 0x83f, 0x85f, 0x87f, 0x89f, 0x8bf, 0x8df, 0x8ff, 0x91f, 0x93f, 0x95f, 0x97f, 0x99f, 0x9bf, 0x9df, 0x9ff, 0xa1f, 0xa3f, 0xa5f, 0xa7f, 0xa9f, 0xabf, 0xadf, 0xaff, 0xb1f, 0xb3f, 0xb5f, 0xb7f, 0xb9f, 0xbbf, 0xbdf, 0xbff, 0xc1f, 0xc3f, 0xc5f, 0xc7f, 0xc9f, 0xcbf, 0xcdf, 0xcff, 0xd1f, 0xd3f, 0xd5f, 0xd7f, 0xd9f, 0xdbf, 0xddf, 0xdff, 0xe1f, 0xe3f, 0xe5f, 0xe7f, 0xe9f, 0xebf, 0xedf, 0xeff, 0xf1f, 0xf3f, 0xf5f, 0xf7f, 0xf9f, 0xfbf, 0xfdf, | ||
60 | 0xfff, 0xfdf, 0xfbf, 0xf9f, 0xf7f, 0xf5f, 0xf3f, 0xf1f, 0xeff, 0xedf, 0xebf, 0xe9f, 0xe7f, 0xe5f, 0xe3f, 0xe1f, 0xdff, 0xddf, 0xdbf, 0xd9f, 0xd7f, 0xd5f, 0xd3f, 0xd1f, 0xcff, 0xcdf, 0xcbf, 0xc9f, 0xc7f, 0xc5f, 0xc3f, 0xc1f, 0xbff, 0xbdf, 0xbbf, 0xb9f, 0xb7f, 0xb5f, 0xb3f, 0xb1f, 0xaff, 0xadf, 0xabf, 0xa9f, 0xa7f, 0xa5f, 0xa3f, 0xa1f, 0x9ff, 0x9df, 0x9bf, 0x99f, 0x97f, 0x95f, 0x93f, 0x91f, 0x8ff, 0x8df, 0x8bf, 0x89f, 0x87f, 0x85f, 0x83f, 0x81f, 0x800, 0x7e0, 0x7c0, 0x7a0, 0x780, 0x760, 0x740, 0x720, 0x700, 0x6e0, 0x6c0, 0x6a0, 0x680, 0x660, 0x640, 0x620, 0x600, 0x5e0, 0x5c0, 0x5a0, 0x580, 0x560, 0x540, 0x520, 0x500, 0x4e0, 0x4c0, 0x4a0, 0x480, 0x460, 0x440, 0x420, 0x400, 0x3e0, 0x3c0, 0x3a0, 0x380, 0x360, 0x340, 0x320, 0x300, 0x2e0, 0x2c0, 0x2a0, 0x280, 0x260, 0x240, 0x220, 0x200, 0x1e0, 0x1c0, 0x1a0, 0x180, 0x160, 0x140, 0x120, 0x100, 0xe0, 0xc0, 0xa0, 0x80, 0x60, 0x40, 0x20}; | ||
61 | #endif // AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE | ||
62 | #ifdef AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE | ||
63 | static const dacsample_t dac_buffer_square[AUDIO_DAC_BUFFER_SIZE] = { | ||
64 | [0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1] = 0, // first and | ||
65 | [AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = AUDIO_DAC_SAMPLE_MAX, // second half | ||
66 | }; | ||
67 | #endif // AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE | ||
68 | /* | ||
69 | // four steps: 0, 1/3, 2/3 and 1 | ||
70 | static const dacsample_t dac_buffer_staircase[AUDIO_DAC_BUFFER_SIZE] = { | ||
71 | [0 ... AUDIO_DAC_BUFFER_SIZE/3 -1 ] = 0, | ||
72 | [AUDIO_DAC_BUFFER_SIZE / 4 ... AUDIO_DAC_BUFFER_SIZE / 2 -1 ] = AUDIO_DAC_SAMPLE_MAX / 3, | ||
73 | [AUDIO_DAC_BUFFER_SIZE / 2 ... 3 * AUDIO_DAC_BUFFER_SIZE / 4 -1 ] = 2 * AUDIO_DAC_SAMPLE_MAX / 3, | ||
74 | [3 * AUDIO_DAC_BUFFER_SIZE / 4 ... AUDIO_DAC_BUFFER_SIZE -1 ] = AUDIO_DAC_SAMPLE_MAX, | ||
75 | } | ||
76 | */ | ||
77 | #ifdef AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID | ||
78 | static const dacsample_t dac_buffer_trapezoid[AUDIO_DAC_BUFFER_SIZE] = {0x0, 0x1f, 0x7f, 0xdf, 0x13f, 0x19f, 0x1ff, 0x25f, 0x2bf, 0x31f, 0x37f, 0x3df, 0x43f, 0x49f, 0x4ff, 0x55f, 0x5bf, 0x61f, 0x67f, 0x6df, 0x73f, 0x79f, 0x7ff, 0x85f, 0x8bf, 0x91f, 0x97f, 0x9df, 0xa3f, 0xa9f, 0xaff, 0xb5f, 0xbbf, 0xc1f, 0xc7f, 0xcdf, 0xd3f, 0xd9f, 0xdff, 0xe5f, 0xebf, 0xf1f, 0xf7f, 0xfdf, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, | ||
79 | 0xfff, 0xfdf, 0xf7f, 0xf1f, 0xebf, 0xe5f, 0xdff, 0xd9f, 0xd3f, 0xcdf, 0xc7f, 0xc1f, 0xbbf, 0xb5f, 0xaff, 0xa9f, 0xa3f, 0x9df, 0x97f, 0x91f, 0x8bf, 0x85f, 0x7ff, 0x79f, 0x73f, 0x6df, 0x67f, 0x61f, 0x5bf, 0x55f, 0x4ff, 0x49f, 0x43f, 0x3df, 0x37f, 0x31f, 0x2bf, 0x25f, 0x1ff, 0x19f, 0x13f, 0xdf, 0x7f, 0x1f, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}; | ||
80 | #endif // AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID | ||
81 | |||
82 | static dacsample_t dac_buffer_empty[AUDIO_DAC_BUFFER_SIZE] = {AUDIO_DAC_OFF_VALUE}; | ||
83 | |||
84 | /* keep track of the sample position for for each frequency */ | ||
85 | static float dac_if[AUDIO_MAX_SIMULTANEOUS_TONES] = {0.0}; | ||
86 | |||
87 | static float active_tones_snapshot[AUDIO_MAX_SIMULTANEOUS_TONES] = {0, 0}; | ||
88 | static uint8_t active_tones_snapshot_length = 0; | ||
89 | |||
90 | typedef enum { | ||
91 | OUTPUT_SHOULD_START, | ||
92 | OUTPUT_RUN_NORMALLY, | ||
93 | // path 1: wait for zero, then change/update active tones | ||
94 | OUTPUT_TONES_CHANGED, | ||
95 | OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE, | ||
96 | // path 2: hardware should stop, wait for zero then turn output off = stop the timer | ||
97 | OUTPUT_SHOULD_STOP, | ||
98 | OUTPUT_REACHED_ZERO_BEFORE_OFF, | ||
99 | OUTPUT_OFF, | ||
100 | OUTPUT_OFF_1, | ||
101 | OUTPUT_OFF_2, // trailing off: giving the DAC two more conversion cycles until the AUDIO_DAC_OFF_VALUE reaches the output, then turn the timer off, which leaves the output at that level | ||
102 | number_of_output_states | ||
103 | } output_states_t; | ||
104 | output_states_t state = OUTPUT_OFF_2; | ||
105 | |||
106 | /** | ||
107 | * Generation of the waveform being passed to the callback. Declared weak so users | ||
108 | * can override it with their own wave-forms/noises. | ||
109 | */ | ||
110 | __attribute__((weak)) uint16_t dac_value_generate(void) { | ||
111 | // DAC is running/asking for values but snapshot length is zero -> must be playing a pause | ||
112 | if (active_tones_snapshot_length == 0) { | ||
113 | return AUDIO_DAC_OFF_VALUE; | ||
114 | } | ||
115 | |||
116 | /* doing additive wave synthesis over all currently playing tones = adding up | ||
117 | * sine-wave-samples for each frequency, scaled by the number of active tones | ||
118 | */ | ||
119 | uint16_t value = 0; | ||
120 | float frequency = 0.0f; | ||
121 | |||
122 | for (uint8_t i = 0; i < active_tones_snapshot_length; i++) { | ||
123 | /* Note: a user implementation does not have to rely on the active_tones_snapshot, but | ||
124 | * could directly query the active frequencies through audio_get_processed_frequency */ | ||
125 | frequency = active_tones_snapshot[i]; | ||
126 | |||
127 | dac_if[i] = dac_if[i] + ((frequency * AUDIO_DAC_BUFFER_SIZE) / AUDIO_DAC_SAMPLE_RATE) * 2 / 3; | ||
128 | /*Note: the 2/3 are necessary to get the correct frequencies on the | ||
129 | * DAC output (as measured with an oscilloscope), since the gpt | ||
130 | * timer runs with 3*AUDIO_DAC_SAMPLE_RATE; and the DAC callback | ||
131 | * is called twice per conversion.*/ | ||
132 | |||
133 | dac_if[i] = fmod(dac_if[i], AUDIO_DAC_BUFFER_SIZE); | ||
134 | |||
135 | // Wavetable generation/lookup | ||
136 | uint16_t dac_i = (uint16_t)dac_if[i]; | ||
137 | |||
138 | #if defined(AUDIO_DAC_SAMPLE_WAVEFORM_SINE) | ||
139 | value += dac_buffer_sine[dac_i] / active_tones_snapshot_length; | ||
140 | #elif defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE) | ||
141 | value += dac_buffer_triangle[dac_i] / active_tones_snapshot_length; | ||
142 | #elif defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID) | ||
143 | value += dac_buffer_trapezoid[dac_i] / active_tones_snapshot_length; | ||
144 | #elif defined(AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE) | ||
145 | value += dac_buffer_square[dac_i] / active_tones_snapshot_length; | ||
146 | #endif | ||
147 | /* | ||
148 | // SINE | ||
149 | value += dac_buffer_sine[dac_i] / active_tones_snapshot_length / 3; | ||
150 | // TRIANGLE | ||
151 | value += dac_buffer_triangle[dac_i] / active_tones_snapshot_length / 3; | ||
152 | // SQUARE | ||
153 | value += dac_buffer_square[dac_i] / active_tones_snapshot_length / 3; | ||
154 | //NOTE: combination of these three wave-forms is more exemplary - and doesn't sound particularly good :-P | ||
155 | */ | ||
156 | |||
157 | // STAIRS (mostly usefully as test-pattern) | ||
158 | // value_avg = dac_buffer_staircase[dac_i] / active_tones_snapshot_length; | ||
159 | } | ||
160 | |||
161 | return value; | ||
162 | } | ||
163 | |||
164 | /** | ||
165 | * DAC streaming callback. Does all of the main computing for playing songs. | ||
166 | * | ||
167 | * Note: chibios calls this CB twice: during the 'half buffer event', and the 'full buffer event'. | ||
168 | */ | ||
169 | static void dac_end(DACDriver *dacp) { | ||
170 | dacsample_t *sample_p = (dacp)->samples; | ||
171 | |||
172 | // work on the other half of the buffer | ||
173 | if (dacIsBufferComplete(dacp)) { | ||
174 | sample_p += AUDIO_DAC_BUFFER_SIZE / 2; // 'half_index' | ||
175 | } | ||
176 | |||
177 | for (uint8_t s = 0; s < AUDIO_DAC_BUFFER_SIZE / 2; s++) { | ||
178 | if (OUTPUT_OFF <= state) { | ||
179 | sample_p[s] = AUDIO_DAC_OFF_VALUE; | ||
180 | continue; | ||
181 | } else { | ||
182 | sample_p[s] = dac_value_generate(); | ||
183 | } | ||
184 | |||
185 | /* zero crossing (or approach, whereas zero == DAC_OFF_VALUE, which can be configured to anything from 0 to DAC_SAMPLE_MAX) | ||
186 | * ============================*=*========================== AUDIO_DAC_SAMPLE_MAX | ||
187 | * * * | ||
188 | * * * | ||
189 | * --------------------------------------------------------- | ||
190 | * * * } AUDIO_DAC_SAMPLE_MAX/100 | ||
191 | * --------------------------------------------------------- AUDIO_DAC_OFF_VALUE | ||
192 | * * * } AUDIO_DAC_SAMPLE_MAX/100 | ||
193 | * --------------------------------------------------------- | ||
194 | * * | ||
195 | * * * | ||
196 | * * * | ||
197 | * =====*=*================================================= 0x0 | ||
198 | */ | ||
199 | if (((sample_p[s] + (AUDIO_DAC_SAMPLE_MAX / 100)) > AUDIO_DAC_OFF_VALUE) && // value approaches from below | ||
200 | (sample_p[s] < (AUDIO_DAC_OFF_VALUE + (AUDIO_DAC_SAMPLE_MAX / 100))) // or above | ||
201 | ) { | ||
202 | if ((OUTPUT_SHOULD_START == state) && (active_tones_snapshot_length > 0)) { | ||
203 | state = OUTPUT_RUN_NORMALLY; | ||
204 | } else if (OUTPUT_TONES_CHANGED == state) { | ||
205 | state = OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE; | ||
206 | } else if (OUTPUT_SHOULD_STOP == state) { | ||
207 | state = OUTPUT_REACHED_ZERO_BEFORE_OFF; | ||
208 | } | ||
209 | } | ||
210 | |||
211 | // still 'ramping up', reset the output to OFF_VALUE until the generated values reach that value, to do a smooth handover | ||
212 | if (OUTPUT_SHOULD_START == state) { | ||
213 | sample_p[s] = AUDIO_DAC_OFF_VALUE; | ||
214 | } | ||
215 | |||
216 | if ((OUTPUT_SHOULD_START == state) || (OUTPUT_REACHED_ZERO_BEFORE_OFF == state) || (OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE == state)) { | ||
217 | uint8_t active_tones = MIN(AUDIO_MAX_SIMULTANEOUS_TONES, audio_get_number_of_active_tones()); | ||
218 | active_tones_snapshot_length = 0; | ||
219 | // update the snapshot - once, and only on occasion that something changed; | ||
220 | // -> saves cpu cycles (?) | ||
221 | for (uint8_t i = 0; i < active_tones; i++) { | ||
222 | float freq = audio_get_processed_frequency(i); | ||
223 | if (freq > 0) { // disregard 'rest' notes, with valid frequency 0.0f; which would only lower the resulting waveform volume during the additive synthesis step | ||
224 | active_tones_snapshot[active_tones_snapshot_length++] = freq; | ||
225 | } | ||
226 | } | ||
227 | |||
228 | if ((0 == active_tones_snapshot_length) && (OUTPUT_REACHED_ZERO_BEFORE_OFF == state)) { | ||
229 | state = OUTPUT_OFF; | ||
230 | } | ||
231 | if (OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE == state) { | ||
232 | state = OUTPUT_RUN_NORMALLY; | ||
233 | } | ||
234 | } | ||
235 | } | ||
236 | |||
237 | // update audio internal state (note position, current_note, ...) | ||
238 | if (audio_update_state()) { | ||
239 | if (OUTPUT_SHOULD_STOP != state) { | ||
240 | state = OUTPUT_TONES_CHANGED; | ||
241 | } | ||
242 | } | ||
243 | |||
244 | if (OUTPUT_OFF <= state) { | ||
245 | if (OUTPUT_OFF_2 == state) { | ||
246 | // stopping timer6 = stopping the DAC at whatever value it is currently pushing to the output = AUDIO_DAC_OFF_VALUE | ||
247 | gptStopTimer(&GPTD6); | ||
248 | } else { | ||
249 | state++; | ||
250 | } | ||
251 | } | ||
252 | } | ||
253 | |||
254 | static void dac_error(DACDriver *dacp, dacerror_t err) { | ||
255 | (void)dacp; | ||
256 | (void)err; | ||
257 | |||
258 | chSysHalt("DAC failure. halp"); | ||
259 | } | ||
260 | |||
261 | static const GPTConfig gpt6cfg1 = {.frequency = AUDIO_DAC_SAMPLE_RATE * 3, | ||
262 | .callback = NULL, | ||
263 | .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */ | ||
264 | .dier = 0U}; | ||
265 | |||
266 | static const DACConfig dac_conf = {.init = AUDIO_DAC_OFF_VALUE, .datamode = DAC_DHRM_12BIT_RIGHT}; | ||
267 | |||
268 | /** | ||
269 | * @note The DAC_TRG(0) here selects the Timer 6 TRGO event, which is triggered | ||
270 | * on the rising edge after 3 APB1 clock cycles, causing our gpt6cfg1.frequency | ||
271 | * to be a third of what we expect. | ||
272 | * | ||
273 | * Here are all the values for DAC_TRG (TSEL in the ref manual) | ||
274 | * TIM15_TRGO 0b011 | ||
275 | * TIM2_TRGO 0b100 | ||
276 | * TIM3_TRGO 0b001 | ||
277 | * TIM6_TRGO 0b000 | ||
278 | * TIM7_TRGO 0b010 | ||
279 | * EXTI9 0b110 | ||
280 | * SWTRIG 0b111 | ||
281 | */ | ||
282 | static const DACConversionGroup dac_conv_cfg = {.num_channels = 1U, .end_cb = dac_end, .error_cb = dac_error, .trigger = DAC_TRG(0b000)}; | ||
283 | |||
284 | void audio_driver_initialize() { | ||
285 | if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) { | ||
286 | palSetLineMode(A4, PAL_MODE_INPUT_ANALOG); | ||
287 | dacStart(&DACD1, &dac_conf); | ||
288 | } | ||
289 | if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) { | ||
290 | palSetLineMode(A5, PAL_MODE_INPUT_ANALOG); | ||
291 | dacStart(&DACD2, &dac_conf); | ||
292 | } | ||
293 | |||
294 | /* enable the output buffer, to directly drive external loads with no additional circuitry | ||
295 | * | ||
296 | * see: AN4566 Application note: Extending the DAC performance of STM32 microcontrollers | ||
297 | * Note: Buffer-Off bit -> has to be set 0 to enable the output buffer | ||
298 | * Note: enabling the output buffer imparts an additional dc-offset of a couple mV | ||
299 | * | ||
300 | * this is done here, reaching directly into the stm32 registers since chibios has not implemented BOFF handling yet | ||
301 | * (see: chibios/os/hal/ports/STM32/todo.txt '- BOFF handling in DACv1.' | ||
302 | */ | ||
303 | DACD1.params->dac->CR &= ~DAC_CR_BOFF1; | ||
304 | DACD2.params->dac->CR &= ~DAC_CR_BOFF2; | ||
305 | |||
306 | if (AUDIO_PIN == A4) { | ||
307 | dacStartConversion(&DACD1, &dac_conv_cfg, dac_buffer_empty, AUDIO_DAC_BUFFER_SIZE); | ||
308 | } else if (AUDIO_PIN == A5) { | ||
309 | dacStartConversion(&DACD2, &dac_conv_cfg, dac_buffer_empty, AUDIO_DAC_BUFFER_SIZE); | ||
310 | } | ||
311 | |||
312 | // no inverted/out-of-phase waveform (yet?), only pulling AUDIO_PIN_ALT to AUDIO_DAC_OFF_VALUE | ||
313 | #if defined(AUDIO_PIN_ALT_AS_NEGATIVE) | ||
314 | if (AUDIO_PIN_ALT == A4) { | ||
315 | dacPutChannelX(&DACD1, 0, AUDIO_DAC_OFF_VALUE); | ||
316 | } else if (AUDIO_PIN_ALT == A5) { | ||
317 | dacPutChannelX(&DACD2, 0, AUDIO_DAC_OFF_VALUE); | ||
318 | } | ||
319 | #endif | ||
320 | |||
321 | gptStart(&GPTD6, &gpt6cfg1); | ||
322 | } | ||
323 | |||
324 | void audio_driver_stop(void) { state = OUTPUT_SHOULD_STOP; } | ||
325 | |||
326 | void audio_driver_start(void) { | ||
327 | gptStartContinuous(&GPTD6, 2U); | ||
328 | |||
329 | for (uint8_t i = 0; i < AUDIO_MAX_SIMULTANEOUS_TONES; i++) { | ||
330 | dac_if[i] = 0.0f; | ||
331 | active_tones_snapshot[i] = 0.0f; | ||
332 | } | ||
333 | active_tones_snapshot_length = 0; | ||
334 | state = OUTPUT_SHOULD_START; | ||
335 | } | ||