diff options
Diffstat (limited to 'quantum/split_common/matrix.c')
-rw-r--r-- | quantum/split_common/matrix.c | 639 |
1 files changed, 207 insertions, 432 deletions
diff --git a/quantum/split_common/matrix.c b/quantum/split_common/matrix.c index 2c37053f8..c3d2857ed 100644 --- a/quantum/split_common/matrix.c +++ b/quantum/split_common/matrix.c | |||
@@ -25,529 +25,304 @@ along with this program. If not, see <http://www.gnu.org/licenses/>. | |||
25 | #include "matrix.h" | 25 | #include "matrix.h" |
26 | #include "split_util.h" | 26 | #include "split_util.h" |
27 | #include "config.h" | 27 | #include "config.h" |
28 | #include "timer.h" | ||
29 | #include "split_flags.h" | 28 | #include "split_flags.h" |
30 | #include "quantum.h" | 29 | #include "quantum.h" |
31 | 30 | #include "debounce.h" | |
32 | #ifdef BACKLIGHT_ENABLE | 31 | #include "transport.h" |
33 | # include "backlight.h" | ||
34 | extern backlight_config_t backlight_config; | ||
35 | #endif | ||
36 | |||
37 | #if defined(USE_I2C) || defined(EH) | ||
38 | # include "i2c.h" | ||
39 | #else // USE_SERIAL | ||
40 | # include "serial.h" | ||
41 | #endif | ||
42 | |||
43 | #ifndef DEBOUNCING_DELAY | ||
44 | # define DEBOUNCING_DELAY 5 | ||
45 | #endif | ||
46 | |||
47 | #if (DEBOUNCING_DELAY > 0) | ||
48 | static uint16_t debouncing_time; | ||
49 | static bool debouncing = false; | ||
50 | #endif | ||
51 | |||
52 | #if defined(USE_I2C) || defined(EH) | ||
53 | |||
54 | #if (MATRIX_COLS <= 8) | ||
55 | # define print_matrix_header() print("\nr/c 01234567\n") | ||
56 | # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row)) | ||
57 | # define matrix_bitpop(i) bitpop(matrix[i]) | ||
58 | # define ROW_SHIFTER ((uint8_t)1) | ||
59 | #else | ||
60 | # error "Currently only supports 8 COLS" | ||
61 | #endif | ||
62 | |||
63 | #else // USE_SERIAL | ||
64 | 32 | ||
65 | #if (MATRIX_COLS <= 8) | 33 | #if (MATRIX_COLS <= 8) |
66 | # define print_matrix_header() print("\nr/c 01234567\n") | 34 | # define print_matrix_header() print("\nr/c 01234567\n") |
67 | # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row)) | 35 | # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row)) |
68 | # define matrix_bitpop(i) bitpop(matrix[i]) | 36 | # define matrix_bitpop(i) bitpop(matrix[i]) |
69 | # define ROW_SHIFTER ((uint8_t)1) | 37 | # define ROW_SHIFTER ((uint8_t)1) |
70 | #elif (MATRIX_COLS <= 16) | 38 | #elif (MATRIX_COLS <= 16) |
71 | # define print_matrix_header() print("\nr/c 0123456789ABCDEF\n") | 39 | # define print_matrix_header() print("\nr/c 0123456789ABCDEF\n") |
72 | # define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row)) | 40 | # define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row)) |
73 | # define matrix_bitpop(i) bitpop16(matrix[i]) | 41 | # define matrix_bitpop(i) bitpop16(matrix[i]) |
74 | # define ROW_SHIFTER ((uint16_t)1) | 42 | # define ROW_SHIFTER ((uint16_t)1) |
75 | #elif (MATRIX_COLS <= 32) | 43 | #elif (MATRIX_COLS <= 32) |
76 | # define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n") | 44 | # define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n") |
77 | # define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row)) | 45 | # define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row)) |
78 | # define matrix_bitpop(i) bitpop32(matrix[i]) | 46 | # define matrix_bitpop(i) bitpop32(matrix[i]) |
79 | # define ROW_SHIFTER ((uint32_t)1) | 47 | # define ROW_SHIFTER ((uint32_t)1) |
80 | #endif | ||
81 | |||
82 | #endif | 48 | #endif |
83 | static matrix_row_t matrix_debouncing[MATRIX_ROWS]; | ||
84 | 49 | ||
85 | #define ERROR_DISCONNECT_COUNT 5 | 50 | #define ERROR_DISCONNECT_COUNT 5 |
86 | 51 | ||
87 | #define ROWS_PER_HAND (MATRIX_ROWS/2) | 52 | #define ROWS_PER_HAND (MATRIX_ROWS / 2) |
88 | |||
89 | static uint8_t error_count = 0; | ||
90 | 53 | ||
54 | #ifdef DIRECT_PINS | ||
55 | static pin_t direct_pins[MATRIX_ROWS][MATRIX_COLS] = DIRECT_PINS; | ||
56 | #else | ||
91 | static pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; | 57 | static pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; |
92 | static pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS; | 58 | static pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS; |
59 | #endif | ||
93 | 60 | ||
94 | /* matrix state(1:on, 0:off) */ | 61 | /* matrix state(1:on, 0:off) */ |
95 | static matrix_row_t matrix[MATRIX_ROWS]; | 62 | static matrix_row_t matrix[MATRIX_ROWS]; |
96 | static matrix_row_t matrix_debouncing[MATRIX_ROWS]; | 63 | static matrix_row_t raw_matrix[ROWS_PER_HAND]; |
97 | |||
98 | #if (DIODE_DIRECTION == COL2ROW) | ||
99 | static void init_cols(void); | ||
100 | static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row); | ||
101 | static void unselect_rows(void); | ||
102 | static void select_row(uint8_t row); | ||
103 | static void unselect_row(uint8_t row); | ||
104 | #elif (DIODE_DIRECTION == ROW2COL) | ||
105 | static void init_rows(void); | ||
106 | static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col); | ||
107 | static void unselect_cols(void); | ||
108 | static void unselect_col(uint8_t col); | ||
109 | static void select_col(uint8_t col); | ||
110 | #endif | ||
111 | 64 | ||
112 | __attribute__ ((weak)) | 65 | // row offsets for each hand |
113 | void matrix_init_kb(void) { | 66 | uint8_t thisHand, thatHand; |
114 | matrix_init_user(); | ||
115 | } | ||
116 | 67 | ||
117 | __attribute__ ((weak)) | 68 | // user-defined overridable functions |
118 | void matrix_scan_kb(void) { | ||
119 | matrix_scan_user(); | ||
120 | } | ||
121 | 69 | ||
122 | __attribute__ ((weak)) | 70 | __attribute__((weak)) void matrix_init_kb(void) { matrix_init_user(); } |
123 | void matrix_init_user(void) { | ||
124 | } | ||
125 | 71 | ||
126 | __attribute__ ((weak)) | 72 | __attribute__((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } |
127 | void matrix_scan_user(void) { | ||
128 | } | ||
129 | 73 | ||
130 | __attribute__ ((weak)) | 74 | __attribute__((weak)) void matrix_init_user(void) {} |
131 | void matrix_slave_scan_user(void) { | ||
132 | } | ||
133 | 75 | ||
134 | inline | 76 | __attribute__((weak)) void matrix_scan_user(void) {} |
135 | uint8_t matrix_rows(void) | ||
136 | { | ||
137 | return MATRIX_ROWS; | ||
138 | } | ||
139 | 77 | ||
140 | inline | 78 | __attribute__((weak)) void matrix_slave_scan_user(void) {} |
141 | uint8_t matrix_cols(void) | ||
142 | { | ||
143 | return MATRIX_COLS; | ||
144 | } | ||
145 | 79 | ||
146 | void matrix_init(void) | 80 | // helper functions |
147 | { | ||
148 | debug_enable = true; | ||
149 | debug_matrix = true; | ||
150 | debug_mouse = true; | ||
151 | 81 | ||
152 | // Set pinout for right half if pinout for that half is defined | 82 | inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } |
153 | if (!isLeftHand) { | ||
154 | #ifdef MATRIX_ROW_PINS_RIGHT | ||
155 | const uint8_t row_pins_right[MATRIX_ROWS] = MATRIX_ROW_PINS_RIGHT; | ||
156 | for (uint8_t i = 0; i < MATRIX_ROWS; i++) | ||
157 | row_pins[i] = row_pins_right[i]; | ||
158 | #endif | ||
159 | #ifdef MATRIX_COL_PINS_RIGHT | ||
160 | const uint8_t col_pins_right[MATRIX_COLS] = MATRIX_COL_PINS_RIGHT; | ||
161 | for (uint8_t i = 0; i < MATRIX_COLS; i++) | ||
162 | col_pins[i] = col_pins_right[i]; | ||
163 | #endif | ||
164 | } | ||
165 | 83 | ||
166 | // initialize row and col | 84 | inline uint8_t matrix_cols(void) { return MATRIX_COLS; } |
167 | #if (DIODE_DIRECTION == COL2ROW) | ||
168 | unselect_rows(); | ||
169 | init_cols(); | ||
170 | #elif (DIODE_DIRECTION == ROW2COL) | ||
171 | unselect_cols(); | ||
172 | init_rows(); | ||
173 | #endif | ||
174 | 85 | ||
175 | // initialize matrix state: all keys off | 86 | bool matrix_is_modified(void) { |
176 | for (uint8_t i=0; i < MATRIX_ROWS; i++) { | 87 | if (debounce_active()) return false; |
177 | matrix[i] = 0; | 88 | return true; |
178 | matrix_debouncing[i] = 0; | ||
179 | } | ||
180 | |||
181 | matrix_init_quantum(); | ||
182 | |||
183 | } | 89 | } |
184 | 90 | ||
185 | uint8_t _matrix_scan(void) | 91 | inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1 << col)); } |
186 | { | ||
187 | int offset = isLeftHand ? 0 : (ROWS_PER_HAND); | ||
188 | #if (DIODE_DIRECTION == COL2ROW) | ||
189 | // Set row, read cols | ||
190 | for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) { | ||
191 | # if (DEBOUNCING_DELAY > 0) | ||
192 | bool matrix_changed = read_cols_on_row(matrix_debouncing+offset, current_row); | ||
193 | |||
194 | if (matrix_changed) { | ||
195 | debouncing = true; | ||
196 | debouncing_time = timer_read(); | ||
197 | } | ||
198 | |||
199 | # else | ||
200 | read_cols_on_row(matrix+offset, current_row); | ||
201 | # endif | ||
202 | |||
203 | } | ||
204 | 92 | ||
205 | #elif (DIODE_DIRECTION == ROW2COL) | 93 | inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; } |
206 | // Set col, read rows | ||
207 | for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) { | ||
208 | # if (DEBOUNCING_DELAY > 0) | ||
209 | bool matrix_changed = read_rows_on_col(matrix_debouncing+offset, current_col); | ||
210 | if (matrix_changed) { | ||
211 | debouncing = true; | ||
212 | debouncing_time = timer_read(); | ||
213 | } | ||
214 | # else | ||
215 | read_rows_on_col(matrix+offset, current_col); | ||
216 | # endif | ||
217 | 94 | ||
218 | } | 95 | void matrix_print(void) { |
219 | #endif | 96 | print_matrix_header(); |
220 | 97 | ||
221 | # if (DEBOUNCING_DELAY > 0) | 98 | for (uint8_t row = 0; row < MATRIX_ROWS; row++) { |
222 | if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) { | 99 | phex(row); |
223 | for (uint8_t i = 0; i < ROWS_PER_HAND; i++) { | 100 | print(": "); |
224 | matrix[i+offset] = matrix_debouncing[i+offset]; | 101 | print_matrix_row(row); |
225 | } | 102 | print("\n"); |
226 | debouncing = false; | 103 | } |
227 | } | 104 | } |
228 | # endif | ||
229 | 105 | ||
230 | return 1; | 106 | uint8_t matrix_key_count(void) { |
107 | uint8_t count = 0; | ||
108 | for (uint8_t i = 0; i < MATRIX_ROWS; i++) { | ||
109 | count += matrix_bitpop(i); | ||
110 | } | ||
111 | return count; | ||
231 | } | 112 | } |
232 | 113 | ||
233 | #if defined(USE_I2C) || defined(EH) | 114 | // matrix code |
234 | |||
235 | // Get rows from other half over i2c | ||
236 | int i2c_transaction(void) { | ||
237 | int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; | ||
238 | int err = 0; | ||
239 | |||
240 | // write backlight info | ||
241 | #ifdef BACKLIGHT_ENABLE | ||
242 | if (BACKLIT_DIRTY) { | ||
243 | err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE); | ||
244 | if (err) goto i2c_error; | ||
245 | |||
246 | // Backlight location | ||
247 | err = i2c_master_write(I2C_BACKLIT_START); | ||
248 | if (err) goto i2c_error; | ||
249 | |||
250 | // Write backlight | ||
251 | i2c_master_write(get_backlight_level()); | ||
252 | |||
253 | BACKLIT_DIRTY = false; | ||
254 | } | ||
255 | #endif | ||
256 | 115 | ||
257 | err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE); | 116 | #ifdef DIRECT_PINS |
258 | if (err) goto i2c_error; | ||
259 | 117 | ||
260 | // start of matrix stored at I2C_KEYMAP_START | 118 | static void init_pins(void) { |
261 | err = i2c_master_write(I2C_KEYMAP_START); | 119 | for (int row = 0; row < MATRIX_ROWS; row++) { |
262 | if (err) goto i2c_error; | 120 | for (int col = 0; col < MATRIX_COLS; col++) { |
121 | pin_t pin = direct_pins[row][col]; | ||
122 | if (pin != NO_PIN) { | ||
123 | setPinInputHigh(pin); | ||
124 | } | ||
125 | } | ||
126 | } | ||
127 | } | ||
263 | 128 | ||
264 | // Start read | 129 | static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) { |
265 | err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ); | 130 | matrix_row_t last_row_value = current_matrix[current_row]; |
266 | if (err) goto i2c_error; | 131 | current_matrix[current_row] = 0; |
267 | 132 | ||
268 | if (!err) { | 133 | for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) { |
269 | int i; | 134 | pin_t pin = direct_pins[current_row][col_index]; |
270 | for (i = 0; i < ROWS_PER_HAND-1; ++i) { | 135 | if (pin != NO_PIN) { |
271 | matrix[slaveOffset+i] = i2c_master_read(I2C_ACK); | 136 | current_matrix[current_row] |= readPin(pin) ? 0 : (ROW_SHIFTER << col_index); |
272 | } | ||
273 | matrix[slaveOffset+i] = i2c_master_read(I2C_NACK); | ||
274 | i2c_master_stop(); | ||
275 | } else { | ||
276 | i2c_error: // the cable is disconnceted, or something else went wrong | ||
277 | i2c_reset_state(); | ||
278 | return err; | ||
279 | } | 137 | } |
280 | 138 | } | |
281 | #ifdef RGBLIGHT_ENABLE | ||
282 | if (RGB_DIRTY) { | ||
283 | err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE); | ||
284 | if (err) goto i2c_error; | ||
285 | |||
286 | // RGB Location | ||
287 | err = i2c_master_write(I2C_RGB_START); | ||
288 | if (err) goto i2c_error; | ||
289 | |||
290 | uint32_t dword = eeconfig_read_rgblight(); | ||
291 | |||
292 | // Write RGB | ||
293 | err = i2c_master_write_data(&dword, 4); | ||
294 | if (err) goto i2c_error; | ||
295 | |||
296 | RGB_DIRTY = false; | ||
297 | i2c_master_stop(); | ||
298 | } | ||
299 | #endif | ||
300 | 139 | ||
301 | return 0; | 140 | return (last_row_value != current_matrix[current_row]); |
302 | } | 141 | } |
303 | 142 | ||
304 | #else // USE_SERIAL | 143 | #elif (DIODE_DIRECTION == COL2ROW) |
305 | |||
306 | 144 | ||
307 | typedef struct _Serial_s2m_buffer_t { | 145 | static void select_row(uint8_t row) { |
308 | // TODO: if MATRIX_COLS > 8 change to uint8_t packed_matrix[] for pack/unpack | 146 | writePinLow(row_pins[row]); |
309 | matrix_row_t smatrix[ROWS_PER_HAND]; | 147 | setPinOutput(row_pins[row]); |
310 | } Serial_s2m_buffer_t; | 148 | } |
311 | 149 | ||
312 | volatile Serial_s2m_buffer_t serial_s2m_buffer = {}; | 150 | static void unselect_row(uint8_t row) { setPinInputHigh(row_pins[row]); } |
313 | volatile Serial_m2s_buffer_t serial_m2s_buffer = {}; | ||
314 | uint8_t volatile status0 = 0; | ||
315 | 151 | ||
316 | SSTD_t transactions[] = { | 152 | static void unselect_rows(void) { |
317 | { (uint8_t *)&status0, | 153 | for (uint8_t x = 0; x < ROWS_PER_HAND; x++) { |
318 | sizeof(serial_m2s_buffer), (uint8_t *)&serial_m2s_buffer, | 154 | setPinInputHigh(row_pins[x]); |
319 | sizeof(serial_s2m_buffer), (uint8_t *)&serial_s2m_buffer | ||
320 | } | 155 | } |
321 | }; | 156 | } |
322 | 157 | ||
323 | void serial_master_init(void) | 158 | static void init_pins(void) { |
324 | { soft_serial_initiator_init(transactions, TID_LIMIT(transactions)); } | 159 | unselect_rows(); |
160 | for (uint8_t x = 0; x < MATRIX_COLS; x++) { | ||
161 | setPinInputHigh(col_pins[x]); | ||
162 | } | ||
163 | } | ||
325 | 164 | ||
326 | void serial_slave_init(void) | 165 | static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) { |
327 | { soft_serial_target_init(transactions, TID_LIMIT(transactions)); } | 166 | // Store last value of row prior to reading |
167 | matrix_row_t last_row_value = current_matrix[current_row]; | ||
328 | 168 | ||
329 | int serial_transaction(void) { | 169 | // Clear data in matrix row |
330 | int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; | 170 | current_matrix[current_row] = 0; |
331 | 171 | ||
332 | if (soft_serial_transaction()) { | 172 | // Select row and wait for row selecton to stabilize |
333 | return 1; | 173 | select_row(current_row); |
334 | } | 174 | wait_us(30); |
335 | 175 | ||
336 | // TODO: if MATRIX_COLS > 8 change to unpack() | 176 | // For each col... |
337 | for (int i = 0; i < ROWS_PER_HAND; ++i) { | 177 | for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) { |
338 | matrix[slaveOffset+i] = serial_s2m_buffer.smatrix[i]; | 178 | // Populate the matrix row with the state of the col pin |
339 | } | 179 | current_matrix[current_row] |= readPin(col_pins[col_index]) ? 0 : (ROW_SHIFTER << col_index); |
340 | 180 | } | |
341 | #if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT) | ||
342 | // Code to send RGB over serial goes here (not implemented yet) | ||
343 | #endif | ||
344 | |||
345 | #ifdef BACKLIGHT_ENABLE | ||
346 | // Write backlight level for slave to read | ||
347 | serial_m2s_buffer.backlight_level = backlight_config.enable ? backlight_config.level : 0; | ||
348 | #endif | ||
349 | |||
350 | return 0; | ||
351 | } | ||
352 | #endif | ||
353 | 181 | ||
354 | uint8_t matrix_scan(void) | 182 | // Unselect row |
355 | { | 183 | unselect_row(current_row); |
356 | uint8_t ret = _matrix_scan(); | ||
357 | 184 | ||
358 | #if defined(USE_I2C) || defined(EH) | 185 | return (last_row_value != current_matrix[current_row]); |
359 | if( i2c_transaction() ) { | 186 | } |
360 | #else // USE_SERIAL | ||
361 | if( serial_transaction() ) { | ||
362 | #endif | ||
363 | 187 | ||
364 | error_count++; | 188 | #elif (DIODE_DIRECTION == ROW2COL) |
365 | 189 | ||
366 | if (error_count > ERROR_DISCONNECT_COUNT) { | 190 | static void select_col(uint8_t col) { |
367 | // reset other half if disconnected | 191 | writePinLow(col_pins[col]); |
368 | int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; | 192 | setPinOutput(col_pins[col]); |
369 | for (int i = 0; i < ROWS_PER_HAND; ++i) { | ||
370 | matrix[slaveOffset+i] = 0; | ||
371 | } | ||
372 | } | ||
373 | } else { | ||
374 | error_count = 0; | ||
375 | } | ||
376 | matrix_scan_quantum(); | ||
377 | return ret; | ||
378 | } | 193 | } |
379 | 194 | ||
380 | void matrix_slave_scan(void) { | 195 | static void unselect_col(uint8_t col) { setPinInputHigh(col_pins[col]); } |
381 | _matrix_scan(); | ||
382 | |||
383 | int offset = (isLeftHand) ? 0 : ROWS_PER_HAND; | ||
384 | 196 | ||
385 | #if defined(USE_I2C) || defined(EH) | 197 | static void unselect_cols(void) { |
386 | for (int i = 0; i < ROWS_PER_HAND; ++i) { | 198 | for (uint8_t x = 0; x < MATRIX_COLS; x++) { |
387 | i2c_slave_buffer[I2C_KEYMAP_START+i] = matrix[offset+i]; | 199 | setPinInputHigh(col_pins[x]); |
388 | } | 200 | } |
389 | #else // USE_SERIAL | ||
390 | // TODO: if MATRIX_COLS > 8 change to pack() | ||
391 | for (int i = 0; i < ROWS_PER_HAND; ++i) { | ||
392 | serial_s2m_buffer.smatrix[i] = matrix[offset+i]; | ||
393 | } | ||
394 | #endif | ||
395 | matrix_slave_scan_user(); | ||
396 | } | 201 | } |
397 | 202 | ||
398 | bool matrix_is_modified(void) | 203 | static void init_pins(void) { |
399 | { | 204 | unselect_cols(); |
400 | if (debouncing) return false; | 205 | for (uint8_t x = 0; x < ROWS_PER_HAND; x++) { |
401 | return true; | 206 | setPinInputHigh(row_pins[x]); |
207 | } | ||
402 | } | 208 | } |
403 | 209 | ||
404 | inline | 210 | static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) { |
405 | bool matrix_is_on(uint8_t row, uint8_t col) | 211 | bool matrix_changed = false; |
406 | { | ||
407 | return (matrix[row] & ((matrix_row_t)1<<col)); | ||
408 | } | ||
409 | 212 | ||
410 | inline | 213 | // Select col and wait for col selecton to stabilize |
411 | matrix_row_t matrix_get_row(uint8_t row) | 214 | select_col(current_col); |
412 | { | 215 | wait_us(30); |
413 | return matrix[row]; | 216 | |
414 | } | 217 | // For each row... |
218 | for (uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++) { | ||
219 | // Store last value of row prior to reading | ||
220 | matrix_row_t last_row_value = current_matrix[row_index]; | ||
415 | 221 | ||
416 | void matrix_print(void) | 222 | // Check row pin state |
417 | { | 223 | if (readPin(row_pins[row_index])) { |
418 | print("\nr/c 0123456789ABCDEF\n"); | 224 | // Pin HI, clear col bit |
419 | for (uint8_t row = 0; row < MATRIX_ROWS; row++) { | 225 | current_matrix[row_index] &= ~(ROW_SHIFTER << current_col); |
420 | phex(row); print(": "); | 226 | } else { |
421 | pbin_reverse16(matrix_get_row(row)); | 227 | // Pin LO, set col bit |
422 | print("\n"); | 228 | current_matrix[row_index] |= (ROW_SHIFTER << current_col); |
423 | } | 229 | } |
424 | } | ||
425 | 230 | ||
426 | uint8_t matrix_key_count(void) | 231 | // Determine if the matrix changed state |
427 | { | 232 | if ((last_row_value != current_matrix[row_index]) && !(matrix_changed)) { |
428 | uint8_t count = 0; | 233 | matrix_changed = true; |
429 | for (uint8_t i = 0; i < MATRIX_ROWS; i++) { | ||
430 | count += bitpop16(matrix[i]); | ||
431 | } | 234 | } |
432 | return count; | 235 | } |
433 | } | ||
434 | 236 | ||
435 | #if (DIODE_DIRECTION == COL2ROW) | 237 | // Unselect col |
238 | unselect_col(current_col); | ||
436 | 239 | ||
437 | static void init_cols(void) | 240 | return matrix_changed; |
438 | { | ||
439 | for(uint8_t x = 0; x < MATRIX_COLS; x++) { | ||
440 | setPinInputHigh(col_pins[x]); | ||
441 | } | ||
442 | } | 241 | } |
443 | 242 | ||
444 | static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) | 243 | #endif |
445 | { | ||
446 | // Store last value of row prior to reading | ||
447 | matrix_row_t last_row_value = current_matrix[current_row]; | ||
448 | |||
449 | // Clear data in matrix row | ||
450 | current_matrix[current_row] = 0; | ||
451 | 244 | ||
452 | // Select row and wait for row selecton to stabilize | 245 | void matrix_init(void) { |
453 | select_row(current_row); | 246 | debug_enable = true; |
454 | wait_us(30); | 247 | debug_matrix = true; |
248 | debug_mouse = true; | ||
455 | 249 | ||
456 | // For each col... | 250 | // Set pinout for right half if pinout for that half is defined |
457 | for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) { | 251 | if (!isLeftHand) { |
458 | // Populate the matrix row with the state of the col pin | 252 | #ifdef MATRIX_ROW_PINS_RIGHT |
459 | current_matrix[current_row] |= readPin(col_pins[col_index]) ? 0 : (ROW_SHIFTER << col_index); | 253 | const uint8_t row_pins_right[MATRIX_ROWS] = MATRIX_ROW_PINS_RIGHT; |
254 | for (uint8_t i = 0; i < MATRIX_ROWS; i++) { | ||
255 | row_pins[i] = row_pins_right[i]; | ||
460 | } | 256 | } |
257 | #endif | ||
258 | #ifdef MATRIX_COL_PINS_RIGHT | ||
259 | const uint8_t col_pins_right[MATRIX_COLS] = MATRIX_COL_PINS_RIGHT; | ||
260 | for (uint8_t i = 0; i < MATRIX_COLS; i++) { | ||
261 | col_pins[i] = col_pins_right[i]; | ||
262 | } | ||
263 | #endif | ||
264 | } | ||
461 | 265 | ||
462 | // Unselect row | 266 | thisHand = isLeftHand ? 0 : (ROWS_PER_HAND); |
463 | unselect_row(current_row); | 267 | thatHand = ROWS_PER_HAND - thisHand; |
464 | 268 | ||
465 | return (last_row_value != current_matrix[current_row]); | 269 | // initialize key pins |
466 | } | 270 | init_pins(); |
467 | 271 | ||
468 | static void select_row(uint8_t row) | 272 | // initialize matrix state: all keys off |
469 | { | 273 | for (uint8_t i = 0; i < MATRIX_ROWS; i++) { |
470 | writePinLow(row_pins[row]); | 274 | matrix[i] = 0; |
471 | setPinOutput(row_pins[row]); | 275 | } |
472 | } | ||
473 | 276 | ||
474 | static void unselect_row(uint8_t row) | 277 | debounce_init(ROWS_PER_HAND); |
475 | { | ||
476 | setPinInputHigh(row_pins[row]); | ||
477 | } | ||
478 | 278 | ||
479 | static void unselect_rows(void) | 279 | matrix_init_quantum(); |
480 | { | ||
481 | for(uint8_t x = 0; x < ROWS_PER_HAND; x++) { | ||
482 | setPinInputHigh(row_pins[x]); | ||
483 | } | ||
484 | } | 280 | } |
485 | 281 | ||
282 | uint8_t _matrix_scan(void) { | ||
283 | bool changed = false; | ||
284 | |||
285 | #if defined(DIRECT_PINS) || (DIODE_DIRECTION == COL2ROW) | ||
286 | // Set row, read cols | ||
287 | for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) { | ||
288 | changed |= read_cols_on_row(raw_matrix, current_row); | ||
289 | } | ||
486 | #elif (DIODE_DIRECTION == ROW2COL) | 290 | #elif (DIODE_DIRECTION == ROW2COL) |
291 | // Set col, read rows | ||
292 | for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) { | ||
293 | changed |= read_rows_on_col(raw_matrix, current_col); | ||
294 | } | ||
295 | #endif | ||
487 | 296 | ||
488 | static void init_rows(void) | 297 | debounce(raw_matrix, matrix + thisHand, ROWS_PER_HAND, changed); |
489 | { | ||
490 | for(uint8_t x = 0; x < ROWS_PER_HAND; x++) { | ||
491 | setPinInputHigh(row_pins[x]); | ||
492 | } | ||
493 | } | ||
494 | 298 | ||
495 | static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) | 299 | return 1; |
496 | { | 300 | } |
497 | bool matrix_changed = false; | ||
498 | 301 | ||
499 | // Select col and wait for col selecton to stabilize | 302 | uint8_t matrix_scan(void) { |
500 | select_col(current_col); | 303 | uint8_t ret = _matrix_scan(); |
501 | wait_us(30); | ||
502 | 304 | ||
503 | // For each row... | 305 | if (is_keyboard_master()) { |
504 | for(uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++) | 306 | static uint8_t error_count; |
505 | { | ||
506 | 307 | ||
507 | // Store last value of row prior to reading | 308 | if (!transport_master(matrix + thatHand)) { |
508 | matrix_row_t last_row_value = current_matrix[row_index]; | 309 | error_count++; |
509 | 310 | ||
510 | // Check row pin state | 311 | if (error_count > ERROR_DISCONNECT_COUNT) { |
511 | if (readPin(row_pins[row_index])) | 312 | // reset other half if disconnected |
512 | { | 313 | for (int i = 0; i < ROWS_PER_HAND; ++i) { |
513 | // Pin HI, clear col bit | 314 | matrix[thatHand + i] = 0; |
514 | current_matrix[row_index] &= ~(ROW_SHIFTER << current_col); | ||
515 | } | ||
516 | else | ||
517 | { | ||
518 | // Pin LO, set col bit | ||
519 | current_matrix[row_index] |= (ROW_SHIFTER << current_col); | ||
520 | } | ||
521 | |||
522 | // Determine if the matrix changed state | ||
523 | if ((last_row_value != current_matrix[row_index]) && !(matrix_changed)) | ||
524 | { | ||
525 | matrix_changed = true; | ||
526 | } | 315 | } |
316 | } | ||
317 | } else { | ||
318 | error_count = 0; | ||
527 | } | 319 | } |
528 | 320 | ||
529 | // Unselect col | 321 | matrix_scan_quantum(); |
530 | unselect_col(current_col); | 322 | } else { |
531 | 323 | transport_slave(matrix + thisHand); | |
532 | return matrix_changed; | 324 | matrix_slave_scan_user(); |
533 | } | 325 | } |
534 | |||
535 | static void select_col(uint8_t col) | ||
536 | { | ||
537 | writePinLow(col_pins[col]); | ||
538 | setPinOutput(col_pins[col]); | ||
539 | } | ||
540 | |||
541 | static void unselect_col(uint8_t col) | ||
542 | { | ||
543 | setPinInputHigh(col_pins[col]); | ||
544 | } | ||
545 | 326 | ||
546 | static void unselect_cols(void) | 327 | return ret; |
547 | { | ||
548 | for(uint8_t x = 0; x < MATRIX_COLS; x++) { | ||
549 | setPinInputHigh(col_pins[x]); | ||
550 | } | ||
551 | } | 328 | } |
552 | |||
553 | #endif | ||