diff options
Diffstat (limited to 'tmk_core')
-rw-r--r-- | tmk_core/common/chibios/eeprom_teensy.c | 213 |
1 files changed, 199 insertions, 14 deletions
diff --git a/tmk_core/common/chibios/eeprom_teensy.c b/tmk_core/common/chibios/eeprom_teensy.c index 4aaf66526..2493c607d 100644 --- a/tmk_core/common/chibios/eeprom_teensy.c +++ b/tmk_core/common/chibios/eeprom_teensy.c | |||
@@ -39,7 +39,126 @@ | |||
39 | * SOFTWARE. | 39 | * SOFTWARE. |
40 | */ | 40 | */ |
41 | 41 | ||
42 | #if defined(K20x) /* chip selection */ | 42 | #define SMC_PMSTAT_RUN ((uint8_t)0x01) |
43 | #define SMC_PMSTAT_HSRUN ((uint8_t)0x80) | ||
44 | |||
45 | #define F_CPU KINETIS_SYSCLK_FREQUENCY | ||
46 | |||
47 | static int kinetis_hsrun_disable(void) { | ||
48 | #if defined(MK66F18) | ||
49 | if (SMC->PMSTAT == SMC_PMSTAT_HSRUN) { | ||
50 | // First, reduce the CPU clock speed, but do not change | ||
51 | // the peripheral speed (F_BUS). Serial1 & Serial2 baud | ||
52 | // rates will be impacted, but most other peripherals | ||
53 | // will continue functioning at the same speed. | ||
54 | # if F_CPU == 256000000 && F_BUS == 64000000 | ||
55 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // TODO: TEST | ||
56 | # elif F_CPU == 256000000 && F_BUS == 128000000 | ||
57 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // TODO: TEST | ||
58 | # elif F_CPU == 240000000 && F_BUS == 60000000 | ||
59 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok | ||
60 | # elif F_CPU == 240000000 && F_BUS == 80000000 | ||
61 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok | ||
62 | # elif F_CPU == 240000000 && F_BUS == 120000000 | ||
63 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok | ||
64 | # elif F_CPU == 216000000 && F_BUS == 54000000 | ||
65 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok | ||
66 | # elif F_CPU == 216000000 && F_BUS == 72000000 | ||
67 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok | ||
68 | # elif F_CPU == 216000000 && F_BUS == 108000000 | ||
69 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok | ||
70 | # elif F_CPU == 192000000 && F_BUS == 48000000 | ||
71 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 3, 1, 7); // ok | ||
72 | # elif F_CPU == 192000000 && F_BUS == 64000000 | ||
73 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok | ||
74 | # elif F_CPU == 192000000 && F_BUS == 96000000 | ||
75 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok | ||
76 | # elif F_CPU == 180000000 && F_BUS == 60000000 | ||
77 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 8); // ok | ||
78 | # elif F_CPU == 180000000 && F_BUS == 90000000 | ||
79 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 7); // ok | ||
80 | # elif F_CPU == 168000000 && F_BUS == 56000000 | ||
81 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5); // ok | ||
82 | # elif F_CPU == 144000000 && F_BUS == 48000000 | ||
83 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(2, 2, 2, 5); // ok | ||
84 | # elif F_CPU == 144000000 && F_BUS == 72000000 | ||
85 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(1, 1, 1, 5); // ok | ||
86 | # elif F_CPU == 120000000 && F_BUS == 60000000 | ||
87 | SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(KINETIS_CLKDIV1_OUTDIV1 - 1) | SIM_CLKDIV1_OUTDIV2(KINETIS_CLKDIV1_OUTDIV2 - 1) | | ||
88 | # if defined(MK66F18) | ||
89 | SIM_CLKDIV1_OUTDIV3(KINETIS_CLKDIV1_OUTDIV3 - 1) | | ||
90 | # endif | ||
91 | SIM_CLKDIV1_OUTDIV4(KINETIS_CLKDIV1_OUTDIV4 - 1); | ||
92 | # else | ||
93 | return 0; | ||
94 | # endif | ||
95 | // Then turn off HSRUN mode | ||
96 | SMC->PMCTRL = SMC_PMCTRL_RUNM_SET(0); | ||
97 | while (SMC->PMSTAT == SMC_PMSTAT_HSRUN) | ||
98 | ; // wait | ||
99 | return 1; | ||
100 | } | ||
101 | #endif | ||
102 | return 0; | ||
103 | } | ||
104 | |||
105 | static int kinetis_hsrun_enable(void) { | ||
106 | #if defined(MK66F18) | ||
107 | if (SMC->PMSTAT == SMC_PMSTAT_RUN) { | ||
108 | // Turn HSRUN mode on | ||
109 | SMC->PMCTRL = SMC_PMCTRL_RUNM_SET(3); | ||
110 | while (SMC->PMSTAT != SMC_PMSTAT_HSRUN) { | ||
111 | ; | ||
112 | } // wait | ||
113 | // Then configure clock for full speed | ||
114 | # if F_CPU == 256000000 && F_BUS == 64000000 | ||
115 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7); | ||
116 | # elif F_CPU == 256000000 && F_BUS == 128000000 | ||
117 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7); | ||
118 | # elif F_CPU == 240000000 && F_BUS == 60000000 | ||
119 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7); | ||
120 | # elif F_CPU == 240000000 && F_BUS == 80000000 | ||
121 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7); | ||
122 | # elif F_CPU == 240000000 && F_BUS == 120000000 | ||
123 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7); | ||
124 | # elif F_CPU == 216000000 && F_BUS == 54000000 | ||
125 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 7); | ||
126 | # elif F_CPU == 216000000 && F_BUS == 72000000 | ||
127 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 7); | ||
128 | # elif F_CPU == 216000000 && F_BUS == 108000000 | ||
129 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 7); | ||
130 | # elif F_CPU == 192000000 && F_BUS == 48000000 | ||
131 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 3, 0, 6); | ||
132 | # elif F_CPU == 192000000 && F_BUS == 64000000 | ||
133 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6); | ||
134 | # elif F_CPU == 192000000 && F_BUS == 96000000 | ||
135 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6); | ||
136 | # elif F_CPU == 180000000 && F_BUS == 60000000 | ||
137 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 6); | ||
138 | # elif F_CPU == 180000000 && F_BUS == 90000000 | ||
139 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 6); | ||
140 | # elif F_CPU == 168000000 && F_BUS == 56000000 | ||
141 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 5); | ||
142 | # elif F_CPU == 144000000 && F_BUS == 48000000 | ||
143 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 2, 0, 4); | ||
144 | # elif F_CPU == 144000000 && F_BUS == 72000000 | ||
145 | SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIVS(0, 1, 0, 4); | ||
146 | # elif F_CPU == 120000000 && F_BUS == 60000000 | ||
147 | SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(KINETIS_CLKDIV1_OUTDIV1 - 1) | SIM_CLKDIV1_OUTDIV2(KINETIS_CLKDIV1_OUTDIV2 - 1) | | ||
148 | # if defined(MK66F18) | ||
149 | SIM_CLKDIV1_OUTDIV3(KINETIS_CLKDIV1_OUTDIV3 - 1) | | ||
150 | # endif | ||
151 | SIM_CLKDIV1_OUTDIV4(KINETIS_CLKDIV1_OUTDIV4 - 1); | ||
152 | # else | ||
153 | return 0; | ||
154 | # endif | ||
155 | return 1; | ||
156 | } | ||
157 | #endif | ||
158 | return 0; | ||
159 | } | ||
160 | |||
161 | #if defined(K20x) || defined(MK66F18) /* chip selection */ | ||
43 | /* Teensy 3.0, 3.1, 3.2; mchck; infinity keyboard */ | 162 | /* Teensy 3.0, 3.1, 3.2; mchck; infinity keyboard */ |
44 | 163 | ||
45 | // The EEPROM is really RAM with a hardware-based backup system to | 164 | // The EEPROM is really RAM with a hardware-based backup system to |
@@ -69,22 +188,34 @@ | |||
69 | // | 188 | // |
70 | # define HANDLE_UNALIGNED_WRITES | 189 | # define HANDLE_UNALIGNED_WRITES |
71 | 190 | ||
191 | # if defined(K20x) | ||
192 | # define EEPROM_MAX 2048 | ||
193 | # define EEPARTITION 0x03 // all 32K dataflash for EEPROM, none for Data | ||
194 | # define EEESPLIT 0x30 // must be 0x30 on these chips | ||
195 | # elif defined(MK66F18) | ||
196 | # define EEPROM_MAX 4096 | ||
197 | # define EEPARTITION 0x05 // 128K dataflash for EEPROM, 128K for Data | ||
198 | # define EEESPLIT 0x10 // best endurance: 0x00 = first 12%, 0x10 = first 25%, 0x30 = all equal | ||
199 | # endif | ||
200 | |||
72 | // Minimum EEPROM Endurance | 201 | // Minimum EEPROM Endurance |
73 | // ------------------------ | 202 | // ------------------------ |
74 | # if (EEPROM_SIZE == 2048) // 35000 writes/byte or 70000 writes/word | 203 | # if (EEPROM_SIZE == 4096) |
75 | # define EEESIZE 0x33 | 204 | # define EEESIZE 0x02 |
205 | # elif (EEPROM_SIZE == 2048) // 35000 writes/byte or 70000 writes/word | ||
206 | # define EEESIZE 0x03 | ||
76 | # elif (EEPROM_SIZE == 1024) // 75000 writes/byte or 150000 writes/word | 207 | # elif (EEPROM_SIZE == 1024) // 75000 writes/byte or 150000 writes/word |
77 | # define EEESIZE 0x34 | 208 | # define EEESIZE 0x04 |
78 | # elif (EEPROM_SIZE == 512) // 155000 writes/byte or 310000 writes/word | 209 | # elif (EEPROM_SIZE == 512) // 155000 writes/byte or 310000 writes/word |
79 | # define EEESIZE 0x35 | 210 | # define EEESIZE 0x05 |
80 | # elif (EEPROM_SIZE == 256) // 315000 writes/byte or 630000 writes/word | 211 | # elif (EEPROM_SIZE == 256) // 315000 writes/byte or 630000 writes/word |
81 | # define EEESIZE 0x36 | 212 | # define EEESIZE 0x06 |
82 | # elif (EEPROM_SIZE == 128) // 635000 writes/byte or 1270000 writes/word | 213 | # elif (EEPROM_SIZE == 128) // 635000 writes/byte or 1270000 writes/word |
83 | # define EEESIZE 0x37 | 214 | # define EEESIZE 0x07 |
84 | # elif (EEPROM_SIZE == 64) // 1275000 writes/byte or 2550000 writes/word | 215 | # elif (EEPROM_SIZE == 64) // 1275000 writes/byte or 2550000 writes/word |
85 | # define EEESIZE 0x38 | 216 | # define EEESIZE 0x08 |
86 | # elif (EEPROM_SIZE == 32) // 2555000 writes/byte or 5110000 writes/word | 217 | # elif (EEPROM_SIZE == 32) // 2555000 writes/byte or 5110000 writes/word |
87 | # define EEESIZE 0x39 | 218 | # define EEESIZE 0x09 |
88 | # endif | 219 | # endif |
89 | 220 | ||
90 | /** \brief eeprom initialization | 221 | /** \brief eeprom initialization |
@@ -97,15 +228,21 @@ void eeprom_initialize(void) { | |||
97 | uint8_t status; | 228 | uint8_t status; |
98 | 229 | ||
99 | if (FTFL->FCNFG & FTFL_FCNFG_RAMRDY) { | 230 | if (FTFL->FCNFG & FTFL_FCNFG_RAMRDY) { |
231 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
232 | if (stat) FTFL->FSTAT = stat; | ||
233 | |||
100 | // FlexRAM is configured as traditional RAM | 234 | // FlexRAM is configured as traditional RAM |
101 | // We need to reconfigure for EEPROM usage | 235 | // We need to reconfigure for EEPROM usage |
102 | FTFL->FCCOB0 = 0x80; // PGMPART = Program Partition Command | 236 | kinetis_hsrun_disable(); |
103 | FTFL->FCCOB4 = EEESIZE; // EEPROM Size | 237 | FTFL->FCCOB0 = FTFE_FCCOB0_CCOBn_SET(0x80); // PGMPART = Program Partition Command |
104 | FTFL->FCCOB5 = 0x03; // 0K for Dataflash, 32K for EEPROM backup | 238 | FTFL->FCCOB3 = 0; |
239 | FTFL->FCCOB4 = EEESPLIT | EEESIZE; | ||
240 | FTFL->FCCOB5 = EEPARTITION; | ||
105 | __disable_irq(); | 241 | __disable_irq(); |
106 | // do_flash_cmd() must execute from RAM. Luckily the C syntax is simple... | 242 | // do_flash_cmd() must execute from RAM. Luckily the C syntax is simple... |
107 | (*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFL->FSTAT)); | 243 | (*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFL->FSTAT)); |
108 | __enable_irq(); | 244 | __enable_irq(); |
245 | kinetis_hsrun_enable(); | ||
109 | status = FTFL->FSTAT; | 246 | status = FTFL->FSTAT; |
110 | if (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL)) { | 247 | if (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL)) { |
111 | FTFL->FSTAT = (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL)); | 248 | FTFL->FSTAT = (status & (FTFL_FSTAT_RDCOLERR | FTFL_FSTAT_ACCERR | FTFL_FSTAT_FPVIOL)); |
@@ -114,11 +251,11 @@ void eeprom_initialize(void) { | |||
114 | } | 251 | } |
115 | // wait for eeprom to become ready (is this really necessary?) | 252 | // wait for eeprom to become ready (is this really necessary?) |
116 | while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) { | 253 | while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) { |
117 | if (++count > 20000) break; | 254 | if (++count > 200000) break; |
118 | } | 255 | } |
119 | } | 256 | } |
120 | 257 | ||
121 | # define FlexRAM ((uint8_t *)0x14000000) | 258 | # define FlexRAM ((volatile uint8_t *)0x14000000) |
122 | 259 | ||
123 | /** \brief eeprom read byte | 260 | /** \brief eeprom read byte |
124 | * | 261 | * |
@@ -195,8 +332,12 @@ void eeprom_write_byte(uint8_t *addr, uint8_t value) { | |||
195 | if (offset >= EEPROM_SIZE) return; | 332 | if (offset >= EEPROM_SIZE) return; |
196 | if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize(); | 333 | if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize(); |
197 | if (FlexRAM[offset] != value) { | 334 | if (FlexRAM[offset] != value) { |
335 | kinetis_hsrun_disable(); | ||
336 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
337 | if (stat) FTFL->FSTAT = stat; | ||
198 | FlexRAM[offset] = value; | 338 | FlexRAM[offset] = value; |
199 | flexram_wait(); | 339 | flexram_wait(); |
340 | kinetis_hsrun_enable(); | ||
200 | } | 341 | } |
201 | } | 342 | } |
202 | 343 | ||
@@ -213,18 +354,30 @@ void eeprom_write_word(uint16_t *addr, uint16_t value) { | |||
213 | if ((offset & 1) == 0) { | 354 | if ((offset & 1) == 0) { |
214 | # endif | 355 | # endif |
215 | if (*(uint16_t *)(&FlexRAM[offset]) != value) { | 356 | if (*(uint16_t *)(&FlexRAM[offset]) != value) { |
357 | kinetis_hsrun_disable(); | ||
358 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
359 | if (stat) FTFL->FSTAT = stat; | ||
216 | *(uint16_t *)(&FlexRAM[offset]) = value; | 360 | *(uint16_t *)(&FlexRAM[offset]) = value; |
217 | flexram_wait(); | 361 | flexram_wait(); |
362 | kinetis_hsrun_enable(); | ||
218 | } | 363 | } |
219 | # ifdef HANDLE_UNALIGNED_WRITES | 364 | # ifdef HANDLE_UNALIGNED_WRITES |
220 | } else { | 365 | } else { |
221 | if (FlexRAM[offset] != value) { | 366 | if (FlexRAM[offset] != value) { |
367 | kinetis_hsrun_disable(); | ||
368 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
369 | if (stat) FTFL->FSTAT = stat; | ||
222 | FlexRAM[offset] = value; | 370 | FlexRAM[offset] = value; |
223 | flexram_wait(); | 371 | flexram_wait(); |
372 | kinetis_hsrun_enable(); | ||
224 | } | 373 | } |
225 | if (FlexRAM[offset + 1] != (value >> 8)) { | 374 | if (FlexRAM[offset + 1] != (value >> 8)) { |
375 | kinetis_hsrun_disable(); | ||
376 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
377 | if (stat) FTFL->FSTAT = stat; | ||
226 | FlexRAM[offset + 1] = value >> 8; | 378 | FlexRAM[offset + 1] = value >> 8; |
227 | flexram_wait(); | 379 | flexram_wait(); |
380 | kinetis_hsrun_enable(); | ||
228 | } | 381 | } |
229 | } | 382 | } |
230 | # endif | 383 | # endif |
@@ -244,33 +397,57 @@ void eeprom_write_dword(uint32_t *addr, uint32_t value) { | |||
244 | case 0: | 397 | case 0: |
245 | # endif | 398 | # endif |
246 | if (*(uint32_t *)(&FlexRAM[offset]) != value) { | 399 | if (*(uint32_t *)(&FlexRAM[offset]) != value) { |
400 | kinetis_hsrun_disable(); | ||
401 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
402 | if (stat) FTFL->FSTAT = stat; | ||
247 | *(uint32_t *)(&FlexRAM[offset]) = value; | 403 | *(uint32_t *)(&FlexRAM[offset]) = value; |
248 | flexram_wait(); | 404 | flexram_wait(); |
405 | kinetis_hsrun_enable(); | ||
249 | } | 406 | } |
250 | return; | 407 | return; |
251 | # ifdef HANDLE_UNALIGNED_WRITES | 408 | # ifdef HANDLE_UNALIGNED_WRITES |
252 | case 2: | 409 | case 2: |
253 | if (*(uint16_t *)(&FlexRAM[offset]) != value) { | 410 | if (*(uint16_t *)(&FlexRAM[offset]) != value) { |
411 | kinetis_hsrun_disable(); | ||
412 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
413 | if (stat) FTFL->FSTAT = stat; | ||
254 | *(uint16_t *)(&FlexRAM[offset]) = value; | 414 | *(uint16_t *)(&FlexRAM[offset]) = value; |
255 | flexram_wait(); | 415 | flexram_wait(); |
416 | kinetis_hsrun_enable(); | ||
256 | } | 417 | } |
257 | if (*(uint16_t *)(&FlexRAM[offset + 2]) != (value >> 16)) { | 418 | if (*(uint16_t *)(&FlexRAM[offset + 2]) != (value >> 16)) { |
419 | kinetis_hsrun_disable(); | ||
420 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
421 | if (stat) FTFL->FSTAT = stat; | ||
258 | *(uint16_t *)(&FlexRAM[offset + 2]) = value >> 16; | 422 | *(uint16_t *)(&FlexRAM[offset + 2]) = value >> 16; |
259 | flexram_wait(); | 423 | flexram_wait(); |
424 | kinetis_hsrun_enable(); | ||
260 | } | 425 | } |
261 | return; | 426 | return; |
262 | default: | 427 | default: |
263 | if (FlexRAM[offset] != value) { | 428 | if (FlexRAM[offset] != value) { |
429 | kinetis_hsrun_disable(); | ||
430 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
431 | if (stat) FTFL->FSTAT = stat; | ||
264 | FlexRAM[offset] = value; | 432 | FlexRAM[offset] = value; |
265 | flexram_wait(); | 433 | flexram_wait(); |
434 | kinetis_hsrun_enable(); | ||
266 | } | 435 | } |
267 | if (*(uint16_t *)(&FlexRAM[offset + 1]) != (value >> 8)) { | 436 | if (*(uint16_t *)(&FlexRAM[offset + 1]) != (value >> 8)) { |
437 | kinetis_hsrun_disable(); | ||
438 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
439 | if (stat) FTFL->FSTAT = stat; | ||
268 | *(uint16_t *)(&FlexRAM[offset + 1]) = value >> 8; | 440 | *(uint16_t *)(&FlexRAM[offset + 1]) = value >> 8; |
269 | flexram_wait(); | 441 | flexram_wait(); |
442 | kinetis_hsrun_enable(); | ||
270 | } | 443 | } |
271 | if (FlexRAM[offset + 3] != (value >> 24)) { | 444 | if (FlexRAM[offset + 3] != (value >> 24)) { |
445 | kinetis_hsrun_disable(); | ||
446 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
447 | if (stat) FTFL->FSTAT = stat; | ||
272 | FlexRAM[offset + 3] = value >> 24; | 448 | FlexRAM[offset + 3] = value >> 24; |
273 | flexram_wait(); | 449 | flexram_wait(); |
450 | kinetis_hsrun_enable(); | ||
274 | } | 451 | } |
275 | } | 452 | } |
276 | # endif | 453 | # endif |
@@ -288,6 +465,7 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) { | |||
288 | if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize(); | 465 | if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize(); |
289 | if (len >= EEPROM_SIZE) len = EEPROM_SIZE; | 466 | if (len >= EEPROM_SIZE) len = EEPROM_SIZE; |
290 | if (offset + len >= EEPROM_SIZE) len = EEPROM_SIZE - offset; | 467 | if (offset + len >= EEPROM_SIZE) len = EEPROM_SIZE - offset; |
468 | kinetis_hsrun_disable(); | ||
291 | while (len > 0) { | 469 | while (len > 0) { |
292 | uint32_t lsb = offset & 3; | 470 | uint32_t lsb = offset & 3; |
293 | if (lsb == 0 && len >= 4) { | 471 | if (lsb == 0 && len >= 4) { |
@@ -298,6 +476,8 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) { | |||
298 | val32 |= (*src++ << 16); | 476 | val32 |= (*src++ << 16); |
299 | val32 |= (*src++ << 24); | 477 | val32 |= (*src++ << 24); |
300 | if (*(uint32_t *)(&FlexRAM[offset]) != val32) { | 478 | if (*(uint32_t *)(&FlexRAM[offset]) != val32) { |
479 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
480 | if (stat) FTFL->FSTAT = stat; | ||
301 | *(uint32_t *)(&FlexRAM[offset]) = val32; | 481 | *(uint32_t *)(&FlexRAM[offset]) = val32; |
302 | flexram_wait(); | 482 | flexram_wait(); |
303 | } | 483 | } |
@@ -309,6 +489,8 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) { | |||
309 | val16 = *src++; | 489 | val16 = *src++; |
310 | val16 |= (*src++ << 8); | 490 | val16 |= (*src++ << 8); |
311 | if (*(uint16_t *)(&FlexRAM[offset]) != val16) { | 491 | if (*(uint16_t *)(&FlexRAM[offset]) != val16) { |
492 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
493 | if (stat) FTFL->FSTAT = stat; | ||
312 | *(uint16_t *)(&FlexRAM[offset]) = val16; | 494 | *(uint16_t *)(&FlexRAM[offset]) = val16; |
313 | flexram_wait(); | 495 | flexram_wait(); |
314 | } | 496 | } |
@@ -318,6 +500,8 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) { | |||
318 | // write 8 bits | 500 | // write 8 bits |
319 | uint8_t val8 = *src++; | 501 | uint8_t val8 = *src++; |
320 | if (FlexRAM[offset] != val8) { | 502 | if (FlexRAM[offset] != val8) { |
503 | uint8_t stat = FTFL->FSTAT & 0x70; | ||
504 | if (stat) FTFL->FSTAT = stat; | ||
321 | FlexRAM[offset] = val8; | 505 | FlexRAM[offset] = val8; |
322 | flexram_wait(); | 506 | flexram_wait(); |
323 | } | 507 | } |
@@ -325,6 +509,7 @@ void eeprom_write_block(const void *buf, void *addr, uint32_t len) { | |||
325 | len--; | 509 | len--; |
326 | } | 510 | } |
327 | } | 511 | } |
512 | kinetis_hsrun_enable(); | ||
328 | } | 513 | } |
329 | 514 | ||
330 | /* | 515 | /* |