diff options
author | Joel Challis <git@zvecr.com> | 2021-11-19 18:41:02 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2021-11-19 10:41:02 -0800 |
commit | 2728603fe6d73e805a539d337fd01051c46ca806 (patch) | |
tree | 5c83ffc7efa112da870bd5d8502a9d91d4792f35 /platforms/chibios/eeprom_stm32.c | |
parent | 43b9e23bae12916d5161f03700c9bfe46737324b (diff) | |
download | qmk_firmware-2728603fe6d73e805a539d337fd01051c46ca806.tar.gz qmk_firmware-2728603fe6d73e805a539d337fd01051c46ca806.zip |
Move tmk_core/common/<plat> (#13918)
Diffstat (limited to 'platforms/chibios/eeprom_stm32.c')
-rw-r--r-- | platforms/chibios/eeprom_stm32.c | 687 |
1 files changed, 687 insertions, 0 deletions
diff --git a/platforms/chibios/eeprom_stm32.c b/platforms/chibios/eeprom_stm32.c new file mode 100644 index 000000000..acc6a4851 --- /dev/null +++ b/platforms/chibios/eeprom_stm32.c | |||
@@ -0,0 +1,687 @@ | |||
1 | /* | ||
2 | * This software is experimental and a work in progress. | ||
3 | * Under no circumstances should these files be used in relation to any critical system(s). | ||
4 | * Use of these files is at your own risk. | ||
5 | * | ||
6 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, | ||
7 | * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR | ||
8 | * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | ||
9 | * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, | ||
10 | * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | ||
11 | * DEALINGS IN THE SOFTWARE. | ||
12 | * | ||
13 | * This files are free to use from http://engsta.com/stm32-flash-memory-eeprom-emulator/ by | ||
14 | * Artur F. | ||
15 | * | ||
16 | * Modifications for QMK and STM32F303 by Yiancar | ||
17 | * Modifications to add flash wear leveling by Ilya Zhuravlev | ||
18 | * Modifications to increase flash density by Don Kjer | ||
19 | */ | ||
20 | |||
21 | #include <stdio.h> | ||
22 | #include <stdbool.h> | ||
23 | #include "util.h" | ||
24 | #include "debug.h" | ||
25 | #include "eeprom_stm32.h" | ||
26 | #include "flash_stm32.h" | ||
27 | |||
28 | /* | ||
29 | * We emulate eeprom by writing a snapshot compacted view of eeprom contents, | ||
30 | * followed by a write log of any change since that snapshot: | ||
31 | * | ||
32 | * === SIMULATED EEPROM CONTENTS === | ||
33 | * | ||
34 | * ┌─ Compacted ┬ Write Log ─┐ | ||
35 | * │............│[BYTE][BYTE]│ | ||
36 | * │FFFF....FFFF│[WRD0][WRD1]│ | ||
37 | * │FFFFFFFFFFFF│[WORD][NEXT]│ | ||
38 | * │....FFFFFFFF│[BYTE][WRD0]│ | ||
39 | * ├────────────┼────────────┤ | ||
40 | * └──PAGE_BASE │ │ | ||
41 | * PAGE_LAST─┴─WRITE_BASE │ | ||
42 | * WRITE_LAST ┘ | ||
43 | * | ||
44 | * Compacted contents are the 1's complement of the actual EEPROM contents. | ||
45 | * e.g. An 'FFFF' represents a '0000' value. | ||
46 | * | ||
47 | * The size of the 'compacted' area is equal to the size of the 'emulated' eeprom. | ||
48 | * The size of the compacted-area and write log are configurable, and the combined | ||
49 | * size of Compacted + WriteLog is a multiple FEE_PAGE_SIZE, which is MCU dependent. | ||
50 | * Simulated Eeprom contents are located at the end of available flash space. | ||
51 | * | ||
52 | * The following configuration defines can be set: | ||
53 | * | ||
54 | * FEE_PAGE_COUNT # Total number of pages to use for eeprom simulation (Compact + Write log) | ||
55 | * FEE_DENSITY_BYTES # Size of simulated eeprom. (Defaults to half the space allocated by FEE_PAGE_COUNT) | ||
56 | * NOTE: The current implementation does not include page swapping, | ||
57 | * and FEE_DENSITY_BYTES will consume that amount of RAM as a cached view of actual EEPROM contents. | ||
58 | * | ||
59 | * The maximum size of FEE_DENSITY_BYTES is currently 16384. The write log size equals | ||
60 | * FEE_PAGE_COUNT * FEE_PAGE_SIZE - FEE_DENSITY_BYTES. | ||
61 | * The larger the write log, the less frequently the compacted area needs to be rewritten. | ||
62 | * | ||
63 | * | ||
64 | * *** General Algorithm *** | ||
65 | * | ||
66 | * During initialization: | ||
67 | * The contents of the Compacted-flash area are loaded and the 1's complement value | ||
68 | * is cached into memory (e.g. 0xFFFF in Flash represents 0x0000 in cache). | ||
69 | * Write log entries are processed until a 0xFFFF is reached. | ||
70 | * Each log entry updates a byte or word in the cache. | ||
71 | * | ||
72 | * During reads: | ||
73 | * EEPROM contents are given back directly from the cache in memory. | ||
74 | * | ||
75 | * During writes: | ||
76 | * The contents of the cache is updated first. | ||
77 | * If the Compacted-flash area corresponding to the write address is unprogrammed, the 1's complement of the value is written directly into Compacted-flash | ||
78 | * Otherwise: | ||
79 | * If the write log is full, erase both the Compacted-flash area and the Write log, then write cached contents to the Compacted-flash area. | ||
80 | * Otherwise a Write log entry is constructed and appended to the next free position in the Write log. | ||
81 | * | ||
82 | * | ||
83 | * *** Write Log Structure *** | ||
84 | * | ||
85 | * Write log entries allow for optimized byte writes to addresses below 128. Writing 0 or 1 words are also optimized when word-aligned. | ||
86 | * | ||
87 | * === WRITE LOG ENTRY FORMATS === | ||
88 | * | ||
89 | * ╔═══ Byte-Entry ══╗ | ||
90 | * ║0XXXXXXX║YYYYYYYY║ | ||
91 | * ║ └──┬──┘║└──┬───┘║ | ||
92 | * ║ Address║ Value ║ | ||
93 | * ╚════════╩════════╝ | ||
94 | * 0 <= Address < 0x80 (128) | ||
95 | * | ||
96 | * ╔ Word-Encoded 0 ╗ | ||
97 | * ║100XXXXXXXXXXXXX║ | ||
98 | * ║ │└─────┬─────┘║ | ||
99 | * ║ │Address >> 1 ║ | ||
100 | * ║ └── Value: 0 ║ | ||
101 | * ╚════════════════╝ | ||
102 | * 0 <= Address <= 0x3FFE (16382) | ||
103 | * | ||
104 | * ╔ Word-Encoded 1 ╗ | ||
105 | * ║101XXXXXXXXXXXXX║ | ||
106 | * ║ │└─────┬─────┘║ | ||
107 | * ║ │Address >> 1 ║ | ||
108 | * ║ └── Value: 1 ║ | ||
109 | * ╚════════════════╝ | ||
110 | * 0 <= Address <= 0x3FFE (16382) | ||
111 | * | ||
112 | * ╔═══ Reserved ═══╗ | ||
113 | * ║110XXXXXXXXXXXXX║ | ||
114 | * ╚════════════════╝ | ||
115 | * | ||
116 | * ╔═══════════ Word-Next ═══════════╗ | ||
117 | * ║111XXXXXXXXXXXXX║YYYYYYYYYYYYYYYY║ | ||
118 | * ║ └─────┬─────┘║└───────┬──────┘║ | ||
119 | * ║(Address-128)>>1║ ~Value ║ | ||
120 | * ╚════════════════╩════════════════╝ | ||
121 | * ( 0 <= Address < 0x0080 (128): Reserved) | ||
122 | * 0x80 <= Address <= 0x3FFE (16382) | ||
123 | * | ||
124 | * Write Log entry ranges: | ||
125 | * 0x0000 ... 0x7FFF - Byte-Entry; address is (Entry & 0x7F00) >> 4; value is (Entry & 0xFF) | ||
126 | * 0x8000 ... 0x9FFF - Word-Encoded 0; address is (Entry & 0x1FFF) << 1; value is 0 | ||
127 | * 0xA000 ... 0xBFFF - Word-Encoded 1; address is (Entry & 0x1FFF) << 1; value is 1 | ||
128 | * 0xC000 ... 0xDFFF - Reserved | ||
129 | * 0xE000 ... 0xFFBF - Word-Next; address is (Entry & 0x1FFF) << 1 + 0x80; value is ~(Next_Entry) | ||
130 | * 0xFFC0 ... 0xFFFE - Reserved | ||
131 | * 0xFFFF - Unprogrammed | ||
132 | * | ||
133 | */ | ||
134 | |||
135 | #include "eeprom_stm32_defs.h" | ||
136 | #if !defined(FEE_PAGE_SIZE) || !defined(FEE_PAGE_COUNT) || !defined(FEE_MCU_FLASH_SIZE) || !defined(FEE_PAGE_BASE_ADDRESS) | ||
137 | # error "not implemented." | ||
138 | #endif | ||
139 | |||
140 | /* These bits are used for optimizing encoding of bytes, 0 and 1 */ | ||
141 | #define FEE_WORD_ENCODING 0x8000 | ||
142 | #define FEE_VALUE_NEXT 0x6000 | ||
143 | #define FEE_VALUE_RESERVED 0x4000 | ||
144 | #define FEE_VALUE_ENCODED 0x2000 | ||
145 | #define FEE_BYTE_RANGE 0x80 | ||
146 | |||
147 | /* Addressable range 16KByte: 0 <-> (0x1FFF << 1) */ | ||
148 | #define FEE_ADDRESS_MAX_SIZE 0x4000 | ||
149 | |||
150 | /* Flash word value after erase */ | ||
151 | #define FEE_EMPTY_WORD ((uint16_t)0xFFFF) | ||
152 | |||
153 | /* Size of combined compacted eeprom and write log pages */ | ||
154 | #define FEE_DENSITY_MAX_SIZE (FEE_PAGE_COUNT * FEE_PAGE_SIZE) | ||
155 | |||
156 | #ifndef FEE_MCU_FLASH_SIZE_IGNORE_CHECK /* *TODO: Get rid of this check */ | ||
157 | # if FEE_DENSITY_MAX_SIZE > (FEE_MCU_FLASH_SIZE * 1024) | ||
158 | # pragma message STR(FEE_DENSITY_MAX_SIZE) " > " STR(FEE_MCU_FLASH_SIZE * 1024) | ||
159 | # error emulated eeprom: FEE_DENSITY_MAX_SIZE is greater than available flash size | ||
160 | # endif | ||
161 | #endif | ||
162 | |||
163 | /* Size of emulated eeprom */ | ||
164 | #ifdef FEE_DENSITY_BYTES | ||
165 | # if (FEE_DENSITY_BYTES > FEE_DENSITY_MAX_SIZE) | ||
166 | # pragma message STR(FEE_DENSITY_BYTES) " > " STR(FEE_DENSITY_MAX_SIZE) | ||
167 | # error emulated eeprom: FEE_DENSITY_BYTES exceeds FEE_DENSITY_MAX_SIZE | ||
168 | # endif | ||
169 | # if (FEE_DENSITY_BYTES == FEE_DENSITY_MAX_SIZE) | ||
170 | # pragma message STR(FEE_DENSITY_BYTES) " == " STR(FEE_DENSITY_MAX_SIZE) | ||
171 | # warning emulated eeprom: FEE_DENSITY_BYTES leaves no room for a write log. This will greatly increase the flash wear rate! | ||
172 | # endif | ||
173 | # if FEE_DENSITY_BYTES > FEE_ADDRESS_MAX_SIZE | ||
174 | # pragma message STR(FEE_DENSITY_BYTES) " > " STR(FEE_ADDRESS_MAX_SIZE) | ||
175 | # error emulated eeprom: FEE_DENSITY_BYTES is greater than FEE_ADDRESS_MAX_SIZE allows | ||
176 | # endif | ||
177 | # if ((FEE_DENSITY_BYTES) % 2) == 1 | ||
178 | # error emulated eeprom: FEE_DENSITY_BYTES must be even | ||
179 | # endif | ||
180 | #else | ||
181 | /* Default to half of allocated space used for emulated eeprom, half for write log */ | ||
182 | # define FEE_DENSITY_BYTES (FEE_PAGE_COUNT * FEE_PAGE_SIZE / 2) | ||
183 | #endif | ||
184 | |||
185 | /* Size of write log */ | ||
186 | #ifdef FEE_WRITE_LOG_BYTES | ||
187 | # if ((FEE_DENSITY_BYTES + FEE_WRITE_LOG_BYTES) > FEE_DENSITY_MAX_SIZE) | ||
188 | # pragma message STR(FEE_DENSITY_BYTES) " + " STR(FEE_WRITE_LOG_BYTES) " > " STR(FEE_DENSITY_MAX_SIZE) | ||
189 | # error emulated eeprom: FEE_WRITE_LOG_BYTES exceeds remaining FEE_DENSITY_MAX_SIZE | ||
190 | # endif | ||
191 | # if ((FEE_WRITE_LOG_BYTES) % 2) == 1 | ||
192 | # error emulated eeprom: FEE_WRITE_LOG_BYTES must be even | ||
193 | # endif | ||
194 | #else | ||
195 | /* Default to use all remaining space */ | ||
196 | # define FEE_WRITE_LOG_BYTES (FEE_PAGE_COUNT * FEE_PAGE_SIZE - FEE_DENSITY_BYTES) | ||
197 | #endif | ||
198 | |||
199 | /* Start of the emulated eeprom compacted flash area */ | ||
200 | #define FEE_COMPACTED_BASE_ADDRESS FEE_PAGE_BASE_ADDRESS | ||
201 | /* End of the emulated eeprom compacted flash area */ | ||
202 | #define FEE_COMPACTED_LAST_ADDRESS (FEE_COMPACTED_BASE_ADDRESS + FEE_DENSITY_BYTES) | ||
203 | /* Start of the emulated eeprom write log */ | ||
204 | #define FEE_WRITE_LOG_BASE_ADDRESS FEE_COMPACTED_LAST_ADDRESS | ||
205 | /* End of the emulated eeprom write log */ | ||
206 | #define FEE_WRITE_LOG_LAST_ADDRESS (FEE_WRITE_LOG_BASE_ADDRESS + FEE_WRITE_LOG_BYTES) | ||
207 | |||
208 | #if defined(DYNAMIC_KEYMAP_EEPROM_MAX_ADDR) && (DYNAMIC_KEYMAP_EEPROM_MAX_ADDR >= FEE_DENSITY_BYTES) | ||
209 | # error emulated eeprom: DYNAMIC_KEYMAP_EEPROM_MAX_ADDR is greater than the FEE_DENSITY_BYTES available | ||
210 | #endif | ||
211 | |||
212 | /* In-memory contents of emulated eeprom for faster access */ | ||
213 | /* *TODO: Implement page swapping */ | ||
214 | static uint16_t WordBuf[FEE_DENSITY_BYTES / 2]; | ||
215 | static uint8_t *DataBuf = (uint8_t *)WordBuf; | ||
216 | |||
217 | /* Pointer to the first available slot within the write log */ | ||
218 | static uint16_t *empty_slot; | ||
219 | |||
220 | // #define DEBUG_EEPROM_OUTPUT | ||
221 | |||
222 | /* | ||
223 | * Debug print utils | ||
224 | */ | ||
225 | |||
226 | #if defined(DEBUG_EEPROM_OUTPUT) | ||
227 | |||
228 | # define debug_eeprom debug_enable | ||
229 | # define eeprom_println(s) println(s) | ||
230 | # define eeprom_printf(fmt, ...) xprintf(fmt, ##__VA_ARGS__); | ||
231 | |||
232 | #else /* NO_DEBUG */ | ||
233 | |||
234 | # define debug_eeprom false | ||
235 | # define eeprom_println(s) | ||
236 | # define eeprom_printf(fmt, ...) | ||
237 | |||
238 | #endif /* NO_DEBUG */ | ||
239 | |||
240 | void print_eeprom(void) { | ||
241 | #ifndef NO_DEBUG | ||
242 | int empty_rows = 0; | ||
243 | for (uint16_t i = 0; i < FEE_DENSITY_BYTES; i++) { | ||
244 | if (i % 16 == 0) { | ||
245 | if (i >= FEE_DENSITY_BYTES - 16) { | ||
246 | /* Make sure we display the last row */ | ||
247 | empty_rows = 0; | ||
248 | } | ||
249 | /* Check if this row is uninitialized */ | ||
250 | ++empty_rows; | ||
251 | for (uint16_t j = 0; j < 16; j++) { | ||
252 | if (DataBuf[i + j]) { | ||
253 | empty_rows = 0; | ||
254 | break; | ||
255 | } | ||
256 | } | ||
257 | if (empty_rows > 1) { | ||
258 | /* Repeat empty row */ | ||
259 | if (empty_rows == 2) { | ||
260 | /* Only display the first repeat empty row */ | ||
261 | println("*"); | ||
262 | } | ||
263 | i += 15; | ||
264 | continue; | ||
265 | } | ||
266 | xprintf("%04x", i); | ||
267 | } | ||
268 | if (i % 8 == 0) print(" "); | ||
269 | |||
270 | xprintf(" %02x", DataBuf[i]); | ||
271 | if ((i + 1) % 16 == 0) { | ||
272 | println(""); | ||
273 | } | ||
274 | } | ||
275 | #endif | ||
276 | } | ||
277 | |||
278 | uint16_t EEPROM_Init(void) { | ||
279 | /* Load emulated eeprom contents from compacted flash into memory */ | ||
280 | uint16_t *src = (uint16_t *)FEE_COMPACTED_BASE_ADDRESS; | ||
281 | uint16_t *dest = (uint16_t *)DataBuf; | ||
282 | for (; src < (uint16_t *)FEE_COMPACTED_LAST_ADDRESS; ++src, ++dest) { | ||
283 | *dest = ~*src; | ||
284 | } | ||
285 | |||
286 | if (debug_eeprom) { | ||
287 | println("EEPROM_Init Compacted Pages:"); | ||
288 | print_eeprom(); | ||
289 | println("EEPROM_Init Write Log:"); | ||
290 | } | ||
291 | |||
292 | /* Replay write log */ | ||
293 | uint16_t *log_addr; | ||
294 | for (log_addr = (uint16_t *)FEE_WRITE_LOG_BASE_ADDRESS; log_addr < (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS; ++log_addr) { | ||
295 | uint16_t address = *log_addr; | ||
296 | if (address == FEE_EMPTY_WORD) { | ||
297 | break; | ||
298 | } | ||
299 | /* Check for lowest 128-bytes optimization */ | ||
300 | if (!(address & FEE_WORD_ENCODING)) { | ||
301 | uint8_t bvalue = (uint8_t)address; | ||
302 | address >>= 8; | ||
303 | DataBuf[address] = bvalue; | ||
304 | eeprom_printf("DataBuf[0x%02x] = 0x%02x;\n", address, bvalue); | ||
305 | } else { | ||
306 | uint16_t wvalue; | ||
307 | /* Check if value is in next word */ | ||
308 | if ((address & FEE_VALUE_NEXT) == FEE_VALUE_NEXT) { | ||
309 | /* Read value from next word */ | ||
310 | if (++log_addr >= (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS) { | ||
311 | break; | ||
312 | } | ||
313 | wvalue = ~*log_addr; | ||
314 | if (!wvalue) { | ||
315 | eeprom_printf("Incomplete write at log_addr: 0x%04x;\n", (uint32_t)log_addr); | ||
316 | /* Possibly incomplete write. Ignore and continue */ | ||
317 | continue; | ||
318 | } | ||
319 | address &= 0x1FFF; | ||
320 | address <<= 1; | ||
321 | /* Writes to addresses less than 128 are byte log entries */ | ||
322 | address += FEE_BYTE_RANGE; | ||
323 | } else { | ||
324 | /* Reserved for future use */ | ||
325 | if (address & FEE_VALUE_RESERVED) { | ||
326 | eeprom_printf("Reserved encoded value at log_addr: 0x%04x;\n", (uint32_t)log_addr); | ||
327 | continue; | ||
328 | } | ||
329 | /* Optimization for 0 or 1 values. */ | ||
330 | wvalue = (address & FEE_VALUE_ENCODED) >> 13; | ||
331 | address &= 0x1FFF; | ||
332 | address <<= 1; | ||
333 | } | ||
334 | if (address < FEE_DENSITY_BYTES) { | ||
335 | eeprom_printf("DataBuf[0x%04x] = 0x%04x;\n", address, wvalue); | ||
336 | *(uint16_t *)(&DataBuf[address]) = wvalue; | ||
337 | } else { | ||
338 | eeprom_printf("DataBuf[0x%04x] cannot be set to 0x%04x [BAD ADDRESS]\n", address, wvalue); | ||
339 | } | ||
340 | } | ||
341 | } | ||
342 | |||
343 | empty_slot = log_addr; | ||
344 | |||
345 | if (debug_eeprom) { | ||
346 | println("EEPROM_Init Final DataBuf:"); | ||
347 | print_eeprom(); | ||
348 | } | ||
349 | |||
350 | return FEE_DENSITY_BYTES; | ||
351 | } | ||
352 | |||
353 | /* Clear flash contents (doesn't touch in-memory DataBuf) */ | ||
354 | static void eeprom_clear(void) { | ||
355 | FLASH_Unlock(); | ||
356 | |||
357 | for (uint16_t page_num = 0; page_num < FEE_PAGE_COUNT; ++page_num) { | ||
358 | eeprom_printf("FLASH_ErasePage(0x%04x)\n", (uint32_t)(FEE_PAGE_BASE_ADDRESS + (page_num * FEE_PAGE_SIZE))); | ||
359 | FLASH_ErasePage(FEE_PAGE_BASE_ADDRESS + (page_num * FEE_PAGE_SIZE)); | ||
360 | } | ||
361 | |||
362 | FLASH_Lock(); | ||
363 | |||
364 | empty_slot = (uint16_t *)FEE_WRITE_LOG_BASE_ADDRESS; | ||
365 | eeprom_printf("eeprom_clear empty_slot: 0x%08x\n", (uint32_t)empty_slot); | ||
366 | } | ||
367 | |||
368 | /* Erase emulated eeprom */ | ||
369 | void EEPROM_Erase(void) { | ||
370 | eeprom_println("EEPROM_Erase"); | ||
371 | /* Erase compacted pages and write log */ | ||
372 | eeprom_clear(); | ||
373 | /* re-initialize to reset DataBuf */ | ||
374 | EEPROM_Init(); | ||
375 | } | ||
376 | |||
377 | /* Compact write log */ | ||
378 | static uint8_t eeprom_compact(void) { | ||
379 | /* Erase compacted pages and write log */ | ||
380 | eeprom_clear(); | ||
381 | |||
382 | FLASH_Unlock(); | ||
383 | |||
384 | FLASH_Status final_status = FLASH_COMPLETE; | ||
385 | |||
386 | /* Write emulated eeprom contents from memory to compacted flash */ | ||
387 | uint16_t *src = (uint16_t *)DataBuf; | ||
388 | uintptr_t dest = FEE_COMPACTED_BASE_ADDRESS; | ||
389 | uint16_t value; | ||
390 | for (; dest < FEE_COMPACTED_LAST_ADDRESS; ++src, dest += 2) { | ||
391 | value = *src; | ||
392 | if (value) { | ||
393 | eeprom_printf("FLASH_ProgramHalfWord(0x%04x, 0x%04x)\n", (uint32_t)dest, ~value); | ||
394 | FLASH_Status status = FLASH_ProgramHalfWord(dest, ~value); | ||
395 | if (status != FLASH_COMPLETE) final_status = status; | ||
396 | } | ||
397 | } | ||
398 | |||
399 | FLASH_Lock(); | ||
400 | |||
401 | if (debug_eeprom) { | ||
402 | println("eeprom_compacted:"); | ||
403 | print_eeprom(); | ||
404 | } | ||
405 | |||
406 | return final_status; | ||
407 | } | ||
408 | |||
409 | static uint8_t eeprom_write_direct_entry(uint16_t Address) { | ||
410 | /* Check if we can just write this directly to the compacted flash area */ | ||
411 | uintptr_t directAddress = FEE_COMPACTED_BASE_ADDRESS + (Address & 0xFFFE); | ||
412 | if (*(uint16_t *)directAddress == FEE_EMPTY_WORD) { | ||
413 | /* Write the value directly to the compacted area without a log entry */ | ||
414 | uint16_t value = ~*(uint16_t *)(&DataBuf[Address & 0xFFFE]); | ||
415 | /* Early exit if a write isn't needed */ | ||
416 | if (value == FEE_EMPTY_WORD) return FLASH_COMPLETE; | ||
417 | |||
418 | FLASH_Unlock(); | ||
419 | |||
420 | eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x) [DIRECT]\n", (uint32_t)directAddress, value); | ||
421 | FLASH_Status status = FLASH_ProgramHalfWord(directAddress, value); | ||
422 | |||
423 | FLASH_Lock(); | ||
424 | return status; | ||
425 | } | ||
426 | return 0; | ||
427 | } | ||
428 | |||
429 | static uint8_t eeprom_write_log_word_entry(uint16_t Address) { | ||
430 | FLASH_Status final_status = FLASH_COMPLETE; | ||
431 | |||
432 | uint16_t value = *(uint16_t *)(&DataBuf[Address]); | ||
433 | eeprom_printf("eeprom_write_log_word_entry(0x%04x): 0x%04x\n", Address, value); | ||
434 | |||
435 | /* MSB signifies the lowest 128-byte optimization is not in effect */ | ||
436 | uint16_t encoding = FEE_WORD_ENCODING; | ||
437 | uint8_t entry_size; | ||
438 | if (value <= 1) { | ||
439 | encoding |= value << 13; | ||
440 | entry_size = 2; | ||
441 | } else { | ||
442 | encoding |= FEE_VALUE_NEXT; | ||
443 | entry_size = 4; | ||
444 | /* Writes to addresses less than 128 are byte log entries */ | ||
445 | Address -= FEE_BYTE_RANGE; | ||
446 | } | ||
447 | |||
448 | /* if we can't find an empty spot, we must compact emulated eeprom */ | ||
449 | if (empty_slot > (uint16_t *)(FEE_WRITE_LOG_LAST_ADDRESS - entry_size)) { | ||
450 | /* compact the write log into the compacted flash area */ | ||
451 | return eeprom_compact(); | ||
452 | } | ||
453 | |||
454 | /* Word log writes should be word-aligned. Take back a bit */ | ||
455 | Address >>= 1; | ||
456 | Address |= encoding; | ||
457 | |||
458 | /* ok we found a place let's write our data */ | ||
459 | FLASH_Unlock(); | ||
460 | |||
461 | /* address */ | ||
462 | eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, Address); | ||
463 | final_status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, Address); | ||
464 | |||
465 | /* value */ | ||
466 | if (encoding == (FEE_WORD_ENCODING | FEE_VALUE_NEXT)) { | ||
467 | eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, ~value); | ||
468 | FLASH_Status status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, ~value); | ||
469 | if (status != FLASH_COMPLETE) final_status = status; | ||
470 | } | ||
471 | |||
472 | FLASH_Lock(); | ||
473 | |||
474 | return final_status; | ||
475 | } | ||
476 | |||
477 | static uint8_t eeprom_write_log_byte_entry(uint16_t Address) { | ||
478 | eeprom_printf("eeprom_write_log_byte_entry(0x%04x): 0x%02x\n", Address, DataBuf[Address]); | ||
479 | |||
480 | /* if couldn't find an empty spot, we must compact emulated eeprom */ | ||
481 | if (empty_slot >= (uint16_t *)FEE_WRITE_LOG_LAST_ADDRESS) { | ||
482 | /* compact the write log into the compacted flash area */ | ||
483 | return eeprom_compact(); | ||
484 | } | ||
485 | |||
486 | /* ok we found a place let's write our data */ | ||
487 | FLASH_Unlock(); | ||
488 | |||
489 | /* Pack address and value into the same word */ | ||
490 | uint16_t value = (Address << 8) | DataBuf[Address]; | ||
491 | |||
492 | /* write to flash */ | ||
493 | eeprom_printf("FLASH_ProgramHalfWord(0x%08x, 0x%04x)\n", (uint32_t)empty_slot, value); | ||
494 | FLASH_Status status = FLASH_ProgramHalfWord((uintptr_t)empty_slot++, value); | ||
495 | |||
496 | FLASH_Lock(); | ||
497 | |||
498 | return status; | ||
499 | } | ||
500 | |||
501 | uint8_t EEPROM_WriteDataByte(uint16_t Address, uint8_t DataByte) { | ||
502 | /* if the address is out-of-bounds, do nothing */ | ||
503 | if (Address >= FEE_DENSITY_BYTES) { | ||
504 | eeprom_printf("EEPROM_WriteDataByte(0x%04x, 0x%02x) [BAD ADDRESS]\n", Address, DataByte); | ||
505 | return FLASH_BAD_ADDRESS; | ||
506 | } | ||
507 | |||
508 | /* if the value is the same, don't bother writing it */ | ||
509 | if (DataBuf[Address] == DataByte) { | ||
510 | eeprom_printf("EEPROM_WriteDataByte(0x%04x, 0x%02x) [SKIP SAME]\n", Address, DataByte); | ||
511 | return 0; | ||
512 | } | ||
513 | |||
514 | /* keep DataBuf cache in sync */ | ||
515 | DataBuf[Address] = DataByte; | ||
516 | eeprom_printf("EEPROM_WriteDataByte DataBuf[0x%04x] = 0x%02x\n", Address, DataBuf[Address]); | ||
517 | |||
518 | /* perform the write into flash memory */ | ||
519 | /* First, attempt to write directly into the compacted flash area */ | ||
520 | FLASH_Status status = eeprom_write_direct_entry(Address); | ||
521 | if (!status) { | ||
522 | /* Otherwise append to the write log */ | ||
523 | if (Address < FEE_BYTE_RANGE) { | ||
524 | status = eeprom_write_log_byte_entry(Address); | ||
525 | } else { | ||
526 | status = eeprom_write_log_word_entry(Address & 0xFFFE); | ||
527 | } | ||
528 | } | ||
529 | if (status != 0 && status != FLASH_COMPLETE) { | ||
530 | eeprom_printf("EEPROM_WriteDataByte [STATUS == %d]\n", status); | ||
531 | } | ||
532 | return status; | ||
533 | } | ||
534 | |||
535 | uint8_t EEPROM_WriteDataWord(uint16_t Address, uint16_t DataWord) { | ||
536 | /* if the address is out-of-bounds, do nothing */ | ||
537 | if (Address >= FEE_DENSITY_BYTES) { | ||
538 | eeprom_printf("EEPROM_WriteDataWord(0x%04x, 0x%04x) [BAD ADDRESS]\n", Address, DataWord); | ||
539 | return FLASH_BAD_ADDRESS; | ||
540 | } | ||
541 | |||
542 | /* Check for word alignment */ | ||
543 | FLASH_Status final_status = FLASH_COMPLETE; | ||
544 | if (Address % 2) { | ||
545 | final_status = EEPROM_WriteDataByte(Address, DataWord); | ||
546 | FLASH_Status status = EEPROM_WriteDataByte(Address + 1, DataWord >> 8); | ||
547 | if (status != FLASH_COMPLETE) final_status = status; | ||
548 | if (final_status != 0 && final_status != FLASH_COMPLETE) { | ||
549 | eeprom_printf("EEPROM_WriteDataWord [STATUS == %d]\n", final_status); | ||
550 | } | ||
551 | return final_status; | ||
552 | } | ||
553 | |||
554 | /* if the value is the same, don't bother writing it */ | ||
555 | uint16_t oldValue = *(uint16_t *)(&DataBuf[Address]); | ||
556 | if (oldValue == DataWord) { | ||
557 | eeprom_printf("EEPROM_WriteDataWord(0x%04x, 0x%04x) [SKIP SAME]\n", Address, DataWord); | ||
558 | return 0; | ||
559 | } | ||
560 | |||
561 | /* keep DataBuf cache in sync */ | ||
562 | *(uint16_t *)(&DataBuf[Address]) = DataWord; | ||
563 | eeprom_printf("EEPROM_WriteDataWord DataBuf[0x%04x] = 0x%04x\n", Address, *(uint16_t *)(&DataBuf[Address])); | ||
564 | |||
565 | /* perform the write into flash memory */ | ||
566 | /* First, attempt to write directly into the compacted flash area */ | ||
567 | final_status = eeprom_write_direct_entry(Address); | ||
568 | if (!final_status) { | ||
569 | /* Otherwise append to the write log */ | ||
570 | /* Check if we need to fall back to byte write */ | ||
571 | if (Address < FEE_BYTE_RANGE) { | ||
572 | final_status = FLASH_COMPLETE; | ||
573 | /* Only write a byte if it has changed */ | ||
574 | if ((uint8_t)oldValue != (uint8_t)DataWord) { | ||
575 | final_status = eeprom_write_log_byte_entry(Address); | ||
576 | } | ||
577 | FLASH_Status status = FLASH_COMPLETE; | ||
578 | /* Only write a byte if it has changed */ | ||
579 | if ((oldValue >> 8) != (DataWord >> 8)) { | ||
580 | status = eeprom_write_log_byte_entry(Address + 1); | ||
581 | } | ||
582 | if (status != FLASH_COMPLETE) final_status = status; | ||
583 | } else { | ||
584 | final_status = eeprom_write_log_word_entry(Address); | ||
585 | } | ||
586 | } | ||
587 | if (final_status != 0 && final_status != FLASH_COMPLETE) { | ||
588 | eeprom_printf("EEPROM_WriteDataWord [STATUS == %d]\n", final_status); | ||
589 | } | ||
590 | return final_status; | ||
591 | } | ||
592 | |||
593 | uint8_t EEPROM_ReadDataByte(uint16_t Address) { | ||
594 | uint8_t DataByte = 0xFF; | ||
595 | |||
596 | if (Address < FEE_DENSITY_BYTES) { | ||
597 | DataByte = DataBuf[Address]; | ||
598 | } | ||
599 | |||
600 | eeprom_printf("EEPROM_ReadDataByte(0x%04x): 0x%02x\n", Address, DataByte); | ||
601 | |||
602 | return DataByte; | ||
603 | } | ||
604 | |||
605 | uint16_t EEPROM_ReadDataWord(uint16_t Address) { | ||
606 | uint16_t DataWord = 0xFFFF; | ||
607 | |||
608 | if (Address < FEE_DENSITY_BYTES - 1) { | ||
609 | /* Check word alignment */ | ||
610 | if (Address % 2) { | ||
611 | DataWord = DataBuf[Address] | (DataBuf[Address + 1] << 8); | ||
612 | } else { | ||
613 | DataWord = *(uint16_t *)(&DataBuf[Address]); | ||
614 | } | ||
615 | } | ||
616 | |||
617 | eeprom_printf("EEPROM_ReadDataWord(0x%04x): 0x%04x\n", Address, DataWord); | ||
618 | |||
619 | return DataWord; | ||
620 | } | ||
621 | |||
622 | /***************************************************************************** | ||
623 | * Bind to eeprom_driver.c | ||
624 | *******************************************************************************/ | ||
625 | void eeprom_driver_init(void) { EEPROM_Init(); } | ||
626 | |||
627 | void eeprom_driver_erase(void) { EEPROM_Erase(); } | ||
628 | |||
629 | void eeprom_read_block(void *buf, const void *addr, size_t len) { | ||
630 | const uint8_t *src = (const uint8_t *)addr; | ||
631 | uint8_t * dest = (uint8_t *)buf; | ||
632 | |||
633 | /* Check word alignment */ | ||
634 | if (len && (uintptr_t)src % 2) { | ||
635 | /* Read the unaligned first byte */ | ||
636 | *dest++ = EEPROM_ReadDataByte((const uintptr_t)src++); | ||
637 | --len; | ||
638 | } | ||
639 | |||
640 | uint16_t value; | ||
641 | bool aligned = ((uintptr_t)dest % 2 == 0); | ||
642 | while (len > 1) { | ||
643 | value = EEPROM_ReadDataWord((const uintptr_t)((uint16_t *)src)); | ||
644 | if (aligned) { | ||
645 | *(uint16_t *)dest = value; | ||
646 | dest += 2; | ||
647 | } else { | ||
648 | *dest++ = value; | ||
649 | *dest++ = value >> 8; | ||
650 | } | ||
651 | src += 2; | ||
652 | len -= 2; | ||
653 | } | ||
654 | if (len) { | ||
655 | *dest = EEPROM_ReadDataByte((const uintptr_t)src); | ||
656 | } | ||
657 | } | ||
658 | |||
659 | void eeprom_write_block(const void *buf, void *addr, size_t len) { | ||
660 | uint8_t * dest = (uint8_t *)addr; | ||
661 | const uint8_t *src = (const uint8_t *)buf; | ||
662 | |||
663 | /* Check word alignment */ | ||
664 | if (len && (uintptr_t)dest % 2) { | ||
665 | /* Write the unaligned first byte */ | ||
666 | EEPROM_WriteDataByte((uintptr_t)dest++, *src++); | ||
667 | --len; | ||
668 | } | ||
669 | |||
670 | uint16_t value; | ||
671 | bool aligned = ((uintptr_t)src % 2 == 0); | ||
672 | while (len > 1) { | ||
673 | if (aligned) { | ||
674 | value = *(uint16_t *)src; | ||
675 | } else { | ||
676 | value = *(uint8_t *)src | (*(uint8_t *)(src + 1) << 8); | ||
677 | } | ||
678 | EEPROM_WriteDataWord((uintptr_t)((uint16_t *)dest), value); | ||
679 | dest += 2; | ||
680 | src += 2; | ||
681 | len -= 2; | ||
682 | } | ||
683 | |||
684 | if (len) { | ||
685 | EEPROM_WriteDataByte((uintptr_t)dest, *src); | ||
686 | } | ||
687 | } | ||