aboutsummaryrefslogtreecommitdiff
path: root/quantum/audio/audio_avr.c
diff options
context:
space:
mode:
authorDrashna Jaelre <drashna@live.com>2021-02-14 14:40:38 -0800
committerGitHub <noreply@github.com>2021-02-15 09:40:38 +1100
commitc80e5f9f8868ccaa8cb990be6f4da3f1011c2b78 (patch)
tree146b27153da876b0d068c512691536e8aa9a3769 /quantum/audio/audio_avr.c
parentf53e41ac81662a560a299a23c7863dd2f618a1f8 (diff)
downloadqmk_firmware-c80e5f9f8868ccaa8cb990be6f4da3f1011c2b78.tar.gz
qmk_firmware-c80e5f9f8868ccaa8cb990be6f4da3f1011c2b78.zip
Audio system overhaul (#11820)
* Redo Arm DAC implementation for additive, wavetable synthesis, sample playback changes by Jack Humbert on an implementation for DAC audio on arm/chibios platforms this commits bundles the changes from the arm-dac-work branch focused on audio/audio_arm.* into one commit (leaving out the test-keyboard) f52faeb5d (origin/arm-dac-work) add sample and wavetable examples, parsers for both -> only the changes on audio_arm_.*, the keyboard related parts are split off to a separate commit bfe468ef1 start morphing wavetable 474d100b5 refined a bit 208bee10f play_notes working 3e6478b0b start in-place documentation of dac settings 3e1826a33 fixed blip (rounding error), other waves, added key selection (left/right) 73853d651 5 voices at 44.1khz dfb401b95 limit voices to working number 9632b3379 configuration for the ez 6241f3f3b notes working in a new way * Redo Arm DAC implementation for additive, wavetable synthesis, sample playback changes by Jack Humbert on an implementation for DAC audio on arm/chibios platforms this commit splits off the plank example keymap from commit f52faeb5d (origin/arm-dac-work) add sample and wavetable examples, parsers for both * refactoring: rename audio_ to reflect their supported hardware-platform and audio-generation method: avr vs arm, and pwm vs dac * refactoring: deducplicate ISR code to update the pwm duty-cycle and period in the avr-pwm-implementation pulls three copies of the same code into one function which should improve readability and maintainability :-) * refactoring: move common code of arm and avr implementation into a separate/new file * refactoring: audio_avr_pwm, renaming defines to decouple them from actually used timers, registers and ISRs * refactoring: audio_avr_pwm - replacing function defines with plain register defines aligns better with other existing qmk code (and the new audio_arm_pwm) doing similar pwm thing * add audio-arm-pwm since not all STM32 have a DAC onboard (STM32F2xx and STM32F3xx), pwm-audio is an alternative (STM32F1xx) this code works on a "BluePill" clone, with an STM32F103C8B * clang-format changes on quantum/audio/* only * audio_arm_dac: stopping the notes caused screeching when using the DAC audio paths * audio_arm_pwm: use pushpull on the pin; so that a piezzo can be hooked up direclty without additional components (opendrain would require an external pullup) * refactoring: remove unused file from/for atmel-avr chips * refactoring: remove unused (avr) wavetable file * audio_arm_dac: adapt dac_end callback to changed chibios DAC api the previous chibios (17.6.0) passed along a pointer into the buffer plus a sample_count (which are/already where included in the DACDrivre object) - the current chibios (19.1.0) only passes the driver object. this patch ports more or less exactly what the previous chibios ISR code did: either have the user-callback work the first or second half of the buffer (dacsample_t pointer, with half the DAC_BUFFER_SIZE samples) by adjusting the pointer and sample count * audio-arm-dac: show a compile-warning on undefined audio-pins Co-Authored-By: Drashna Jaelre <drashna@live.com> * audio_arm_dac: switch from exemplary wavetable generation to sine only sine+triangle+squrare is exemplary, and not realy fit for "production" use 'stairs' are usefull for debugging (hardware, with an oscilloscope) * audio_arm_dac: enable output buffers in the STM32 to drive external loads without any additional ciruitry - external opamps and such * audio: prevent out-of-bounds array access * audio_arm_dac: add output-frequency correcting factor * audio_arm_pwm: get both the alternate-function and pm-callback variants back into working condition and do some code-cleanup, refine documentation, ... * audio_arm_pwm: increase pwm frequency for "higher fidelity" on the previous .frequency=100000 higher frequency musical notes came out wrong (frequency measured on a Tektronix TDS2014B) note | freq | arm-pwm C2 | 65.4 | 65.491 C5 | 523.25 | 523.93 C6 | 1046.5 | 1053.38 C7 | 2093 | 2129 C8 | 4186 | 4350.91 with .frequency = 500000 C8 | 4186 | 4204.6 * audio refactoring: remove unused variables * audio_arm_dac: calibrate note tempo: with a tempo of 60beats-per-second a whole-note should last for exactly one second * audio: allow feature selection in rules.mk so the user can switch the audio driver between DAC and PWM on STM32 boards which support both (STM32F2 and up) or select the "pin alternate" pwm mode, for example on STM32F103 * audio-refactoring: move codeblocks in audio.[ch] into more coherent groups and add some inline documentation * audio-refactoring: cleanup and streamline common code between audio_arm_[dac|pwm] untangeling the relation between audio.c and the two drivers and adding more documenting comments :-) * audio_avr_pwm: getting it back into working condition, and cleanup+refactor * audio-refactoring: documentation and typo fixes Co-Authored-By: Nick Brassel <nick@tzarc.org> * audio-refactoring: cleanup defines, inludes and remove debug-prints * audio_chibios_dac: define&use a minimal sampling rate, based on the available tone-range to ease up on the cpu-load, while still rendering the higher notes/tones sufficiently also reenable the lower tones, since with the new implementation there is no evidence of them still beeing 'bugged' * audio-refactoring: one common AUDIO_MAX_VOICES define for all audio-drivers * audio-chibios-pwm: pwm-pin-allternate: make the the timer, timer-channel and alternate function user-#definable * audio_chibios_dac: math.h has fmod for this * Redo Arm DAC implementation for additive, wavetable synthesis, sample playback update Jack Humberts dac-example keymaps for the slight changes in the audio-dac interface * audio-refactoring: use a common AUDIO_PIN configuration switch instead of defines have the user select a pin by configuration in rules.mk instead of a define in config.h has the advantage of beeing in a common form/pattern across all audio-driver implementations * audio-refactoring: switch backlight_avr.c to the new AUDIO_PIN defines * audio-common: have advance_note return a boolean if the note changed, to the next one in the melody beeing played * audio-chibios-pwm: fix issue with ~130ms silence between note/frequency changes while playing a SONG through trial,error and a scope/logic analyzer figured out Chibios-PWMDriver (at least in the current version) misbehaves if the initial period is set to zero (or one; two seems to work); when thats the case subsequent calls to 'pwmChhangePeriod' + pwmEnableChannel took ~135ms of silence, before the PWM continued with the new frequency... * audio-refactoring: get 'play_note' working again with a limited number of available voices (say AUDIO_VOICES_MAX=1) allow new frequencies to be played, by discarding the oldest one in the 'frequencies' queue * audio: set the fallback driver to DAC for chibios and PWM for all others (==avr at the moment) * audio-refactoring: moore documentation and some cleanup * audio-avr-pwm: no fallback on unset AUDIO_PIN this seems to be the expected behaviour by some keyboards (looking at ckeys/handwire_101:default) which otherwise fail to build because the firmware-image ends up beeing too large for the atmega... so we fail silently instead to keep travis happy * audio-refactoring: untangling terminology: voice->tone the code actually was working on tones (combination of pitch/frequency, duration, timbre, intensity/volume) and not voices (characteristic sound of an instrument; think piano vs guitar, which can be played together, each having its own "track" = voice on a music sheet) * audio-pwm: allow freq=0 aka a pause/rest in a SONG continue processing, but do not enable pwm units, since freq=0 wouldn't produce any sound anyway (and lead to division by zero on that occasion) * audio-refactoring: audio_advance_note -> audio_advance_state since it does not only affect 'one note', but the internally kept state as a whole * audio-refactoring: untangling terminology: polyphony the feature om the "inherited" avr code has little to do with polyphony (see wikipedia), but is more a time-multiplexing feature, to work around hardware limitations - like only having one pwm channel, that could on its own only reproduce one voice/instrument at a time * audio-chibios-dac: add zero-crossing feature have tones only change/stop when the waveform approaches zero - to avoid audible clicks note that this also requires the samples to start at zero, since the internally kept index into the samples is reset to zero too * audio-refactoring: feature: time-multiplexing of tones on a single output channel this feature was in the original avr-pwm implementation misnomed as "polyphony" with polyphony_rate and so on; did the same thing though: time-multiplexing multiple active notes so that a single output channel could reproduce more than one note at a time (which is not the same as a polyphony - see wikipedia :-) ) * audio-avr-pwm: get music-mode working (again) on AVRs with both pwm channels, or either one of the two :-) play_notes worked already - but music_mode uses play_note * audio-refactoring: split define MAX_SIMULTANEOUS_TONES -> TONE_STACKSIZE since the two cases are independant from one another, the hardware might impose limitations on the number of simultaneously reproducable tones, but the audio state should be able to track an unrelated number of notes recently started by play_note * audio-arm-dac: per define selectable sample-luts plus generation script in ./util * audio-refactoring: heh, avr has a MIN... * audio-refactoring: add basic dac audio-driver based on the current/master implementation whereas current=d96380e65496912e0f68e6531565f4b45efd1623 which is the state of things before this whole audio-refactoring branch boiled down to interface with the refactored audio system = removing all redundant state-managing and frequency calculation * audio-refactoring: rename audio-drivers to driver_$PLATFORM_$DRIVER * audio-arm-pwm: split the software/hardware implementations into separate files which saves us partially from a 'define hell', with the tradeoff that now two somewhat similar chibios_pwm implementations have to be maintained * audio-refactoring: update documentation * audio-arm-dac: apply AUDIO_PIN defines to driver_chibios_dac_basic * audio-arm-dac: dac_additive: stop the hardware when the last sample completed the audio system calls for a driver_stop, which is delayed until the current sample conversion finishes * audio-refactoring: make function-namespace consistent - all (public) audio functions start with audio_ - also refactoring play*_notes/tones to play*_melody, to visually distance it a bit from play*_tone/_note * audio-refactoring: consistent define namespace: DAC_ -> AUDIO_DAC_ * audio-arm-dac: update (inline) documentation regarding MAX for sample values * audio-chibios-dac: remove zero-crossing feature didn't quite work as intended anyway, and stopping the hardware on close-to-zero seems to be enought anyway * audio-arm-dac: dac_basic: respect the configured sample-rate * audio-arm-pwm: have 'note_timbre' influence the pwm-duty cycle like it already does in the avr implementation * audio-refactoring: get VIBRATO working (again) with all drivers (verified with chibios_[dac|pwm]) * audio-arm-dac: zero-crossing feature (Mk II) wait for the generated waveform to approach 'zero' before either turning off the output+timer or switching to the current set of active_tones * audio-refactoring: re-add note-resting -> introduce short_rest inbetween - introduce a short pause/rest between two notes of the same frequency, to separate them audibly - also updating the refactoring comments * audio-refactoring: cleanup refactoring remnants remove the former avr-isr code block - since all its features are now refactored into the different parts of the current system also updates the TODOS * audio-refactoring: reserve negative numbers as unitialized frequencies to allow the valid tone/frequency f=0Hz == rest/pause * audio-refactoring: FIX: first note of melody was missing the first note was missing because 'goto_next_note'=false overrode a state_change=true of the initial play_tone and some code-indentations/cleanup of related parts * audio-arm-dac: fix hardware init-click due to wron .init= value * audio-refactoring: new conveniance function: audio_play_click which can be used to further refactor/remove fauxclicky (avr only) and/or the 'clicky' features * audio-refactoring: clang-format on quantum/audio/* * audio-avr-pwm: consecutive notes of the same frequency get a pause inserted inbetween by audio.c * audio-refactoring: use milliseconds instead of seconds for 'click' parameters clicks are supposed to be short, seconds make little sense * audio-refactoring: use timer ticks instead of counters local counters were used in the original (avr)ISR to advance an index into the lookup tables (for vibrato), and something similar was used for the tone-multiplexing feature decoupling these from the (possibly irregular) calls to advance_state made sesne, since those counters/lookups need to be in relation to a wall-time anyway * audio-refactoring: voices.c: drop 'envelope_index' counter in favour of timer ticks * audio-refactoring: move vibrato and timbre related parts from audio.c to voices.c also drops the now (globally) unused AUDIO_VIBRATO/AUDIO_ENABLE_VIBRATO defines * audio.c: use system-ticks instead of counters the drivers have to take care of for the internal state posision since there already is a system-tick with ms resolution, keeping count separatly with each driver implementation makes little sense; especially since they had to take special care to call audio_advance_state with the correct step/end parameters for the audio state to advance regularly and with the correct pace * audio.c: stop notes after new ones have been started avoids brief states of with no notes playing that would otherwise stop the hardware and might lead to clicks * audio.c: bugfix: actually play a pause instead of just idling/stopping which lead the pwm drivers to stop entirely... * audio-arm-pwm: pwm-software: add inverted output new define AUDIO_PIN_ALT_AS_NEGATIVE will generate an inverted signal on the alternate pin, which boosts the volume if a piezo is connected to both AUDIO_PIN and AUDIO_PIN_ALT * audio-arm-dac: basic: handle piezo configured&wired to both audio pins * audio-refactoring: docs: update for AUDIO_PIN_ALT_AS_NEGATIVE and piezo wiring * audio.c: bugfix: use timer_elapsed32 instad of keeping timestamps avoids running into issues when the uint32 of the timer overflows * audio-refactoring: add 'pragma once' and remove deprecated NOTE_REST * audio_arm_dac: basic: add missing bracket * audio.c: fix delta calculation was in the wrong place, needs to use the 'last_timestamp' before it was reset * audio-refactoring: buildfix: wrong legacy macro for set_timbre * audio.c: 16bit timerstamps suffice * audio-refactoring: separate includes for AVR and chibios * audio-refactoring: timbre: use uint8 instead of float * audio-refactoring: duration: use uint16 for internal per-tone/note state * audio-refactoring: tonemultiplexing: use uint16 instead of float * audio-arm-dac: additive: set second pin output-low used when a piezo is connected to AUDIO_PIN and AUDIO_PIN_ALT, with PIN_ALT_AS_NEGATIVE * audio-refactoring: move AUDIO_PIN selection from rules.mk to config.h to be consistent with how other features are handled in QMK * audio-refactoring: buildfix: wrong legacy macro for set_tempo * audio-arm-dac: additive: set second pin output-low -- FIXUP * audio.c: do duration<>ms conversion in uint instead of float on AVR, to save a couple of bytes in the firmware size * audio-refactoring: cleanup eeprom defines/usage for ARM, avr is handled automagically through the avr libc and common_features.mk Co-Authored-By: Drashna Jaelre <drashna@live.com> * audio.h: throw an error if OFF is larger than MAX * audio-arm-dac: basic: actually stop the dac-conversion on a audio_driver_stop to put the output pin in a known state == AUDIO_DAC_OFF_VALUE, instead of just leaving them where the last conversion was... with AUDIO_PIN_ALT_AS_NEGATIVE this meant one output was left HIGH while the other was left LOW one CAVEAT: due to this change the opposing squarewave when using both A4 and A5 with AUDIO_PIN_ALT_AS_NEGATIVE show extra pulses at the beginning/end on one of the outputs, the two waveforms are in sync otherwise. the extra pusles probably matter little, since this is no high-fidelity sound generation :P * audio-arm-dac: additive: move zero-crossing code out of dac_value_generate which is/should be user-overridable == simple, and doing one thing: providing sample values state-transitions necessary for the zero crossing are better handled in the surrounding loop in the dac_end callback * audio-arm-dac: dac-additive: zero-crossing: ramping up or down after a start trigger ramp up: generate values until zero=OFF_VALUE is reached, then continue normally same in reverse for strop trigger: output values until zero is reached/crossed, then keep OFF_VALUE on the output * audio-arm-dac: dac-additive: BUGFIX: return OFF_VALUE when a pause is playing fixes a bug during SONG playback, which suddenly stopped when it encoutnered a pause * audio-arm-dac: set a sensible default for AUDIO_DAC_VALUE_OFF 1/2 MAX was probably exemplary, can't think of a setup where that would make sense :-P * audio-arm-dac: update synth_sample/_wavetable for new pin-defines * audio-arm-dac: default for AUDIO_DAC_VALUE_OFF turned out that zero or max are bad default choices: when multiple tones are played (>>5) and released at the same time (!), due to the complex waveform never reaching 'zero' the output can take quite a while to reach zero, and hence the zero-crossing code only "releases" the output waaay to late * audio-arm-dac: additive: use DAC for negative pin instead of PAL, which only allows the pin to be configured as output; LOW or HIGH * audio-arm-dac: more compile-time configuration checks * audio-refactoring: typo fixed * audio-refactoring: clang-format on quantum/audio/* * audio-avr-pwm: add defines for B-pin as primary/only speaker also updates documentation. * audio-refactoring: update documentation with proton-c config.h example * audio-refactoring: move glissando (TODO) to voices.c refactored/saved from the original glissando implementation in then upstream-master:audio_avr.c still needs some work though, as it is now the calculation *should* work, but the start-frequency needs to be tracked somewhere/somehow; not only during a SONG playback but also with user input? * audio-refactoring: cleanup: one round of aspell -c * audio-avr-pwm: back to AUDIO_PIN since config_common.h expands them to plain integers, the AUDIO_PIN define can directly be compared to e.g. B5 so there is no need to deal with separate defines like AUDIO_PIN_B5 * audio-refactoring: add technical documentation audio_driver.md which moves some in-code documentation there * audio-arm-dac: move AUDIO_PIN checks into c-code instead of doing everything with the preprocessor, since A4/A5 do not expand to simple integers, preprocessor int-comparison is not possible. but necessary to get a consistent configuration scheme going throughout the audio-code... solution: let c-code handle the different AUDIO_PIN configurations instead (and leave code/size optimizations to the compiler) * audio-arm-dac: compile-fix: set AUDIO_PIN if unset workaround to get the build going again, and be backwarts compatible to arm-keyboards which not yet set the AUDIO_PIN define. until the define is enforced through an '#error" * audio-refactoring: document tone-multiplexing feature * audio-refactoring: Apply suggestions from documentation review Co-authored-by: James Young <18669334+noroadsleft@users.noreply.github.com> * audio-refactoring: Update docs/audio_driver.md * audio-refactoring: docs: fix markdown newlines Terminating a line in Markdown with <space>-<space>-<linebreak> creates an HTML single-line break (<br>). Co-authored-by: James Young <18669334+noroadsleft@users.noreply.github.com> * audio-arm-dac: additive: fix AUDIO_PIN_ALT handling * audio-arm-pwm: align define naming with other drivers Co-authored-by: Joel Challis <git@zvecr.com> * audio-refactoring: set detault tempo to 120 and add documentation for the override * audio-refactoring: update backlight define checks to new AUDIO_PIN names * audio-refactoring: reworking PWM related defines to be more consistent with other QMK code Co-authored-by: Joel Challis <git@zvecr.com> * audio-arm: have the state-update-timer user configurable defaulting to GPTD6 or GPTD8 for stm32f2+ (=proton-c) stm32f1 might need to set this to GPTD4, since 6 and 8 are not available * audio-refactoring: PLAY_NOTE_ARRAY was already removed in master * Add prototype for startup * Update chibiOS dac basic to disable pins on stop * Add defaults for Proton C * avoid hanging audio if note is completely missed * Don't redefine pins if they're already defined * Define A4 and A5 for CTPC support * Add license headers to keymap files * Remove figlet? comments * Add DAC config to audio driver docs * Apply suggestions from code review Co-authored-by: Jack Humbert <jack.humb@gmail.com> * Add license header to py files * correct license header * Add JohSchneider's name to modified files AKA credit where credit's due * Set executable permission and change interpeter * Add 'wave' to pip requirements * Improve documentation * Add some settings I missed * Strip AUDIO_DRIVER to parse the name correctly * fix depreciated * Update util/audio_generate_dac_lut.py Co-authored-by: Jack Humbert <jack.humb@gmail.com> * Fix type in clueboard config * Apply suggestions from tzarc Co-authored-by: Nick Brassel <nick@tzarc.org> Co-authored-by: Johannes <you@example.com> Co-authored-by: JohSchneider <JohSchneider@googlemail.com> Co-authored-by: Nick Brassel <nick@tzarc.org> Co-authored-by: James Young <18669334+noroadsleft@users.noreply.github.com> Co-authored-by: Joel Challis <git@zvecr.com> Co-authored-by: Joshua Diamond <josh@windowoffire.com> Co-authored-by: Jack Humbert <jack.humb@gmail.com>
Diffstat (limited to 'quantum/audio/audio_avr.c')
-rw-r--r--quantum/audio/audio_avr.c812
1 files changed, 0 insertions, 812 deletions
diff --git a/quantum/audio/audio_avr.c b/quantum/audio/audio_avr.c
deleted file mode 100644
index 1bac43bb4..000000000
--- a/quantum/audio/audio_avr.c
+++ /dev/null
@@ -1,812 +0,0 @@
1/* Copyright 2016 Jack Humbert
2 *
3 * This program is free software: you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation, either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17#include <stdio.h>
18#include <string.h>
19//#include <math.h>
20#if defined(__AVR__)
21# include <avr/pgmspace.h>
22# include <avr/interrupt.h>
23# include <avr/io.h>
24#endif
25#include "print.h"
26#include "audio.h"
27#include "keymap.h"
28#include "wait.h"
29
30#include "eeconfig.h"
31
32#define CPU_PRESCALER 8
33
34// -----------------------------------------------------------------------------
35// Timer Abstractions
36// -----------------------------------------------------------------------------
37
38// Currently we support timers 1 and 3 used at the sime time, channels A-C,
39// pins PB5, PB6, PB7, PC4, PC5, and PC6
40#if defined(C6_AUDIO)
41# define CPIN_AUDIO
42# define CPIN_SET_DIRECTION DDRC |= _BV(PORTC6);
43# define INIT_AUDIO_COUNTER_3 TCCR3A = (0 << COM3A1) | (0 << COM3A0) | (1 << WGM31) | (0 << WGM30);
44# define ENABLE_AUDIO_COUNTER_3_ISR TIMSK3 |= _BV(OCIE3A)
45# define DISABLE_AUDIO_COUNTER_3_ISR TIMSK3 &= ~_BV(OCIE3A)
46# define ENABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A |= _BV(COM3A1);
47# define DISABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A &= ~(_BV(COM3A1) | _BV(COM3A0));
48# define TIMER_3_PERIOD ICR3
49# define TIMER_3_DUTY_CYCLE OCR3A
50# define TIMER3_AUDIO_vect TIMER3_COMPA_vect
51#endif
52#if defined(C5_AUDIO)
53# define CPIN_AUDIO
54# define CPIN_SET_DIRECTION DDRC |= _BV(PORTC5);
55# define INIT_AUDIO_COUNTER_3 TCCR3A = (0 << COM3B1) | (0 << COM3B0) | (1 << WGM31) | (0 << WGM30);
56# define ENABLE_AUDIO_COUNTER_3_ISR TIMSK3 |= _BV(OCIE3B)
57# define DISABLE_AUDIO_COUNTER_3_ISR TIMSK3 &= ~_BV(OCIE3B)
58# define ENABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A |= _BV(COM3B1);
59# define DISABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A &= ~(_BV(COM3B1) | _BV(COM3B0));
60# define TIMER_3_PERIOD ICR3
61# define TIMER_3_DUTY_CYCLE OCR3B
62# define TIMER3_AUDIO_vect TIMER3_COMPB_vect
63#endif
64#if defined(C4_AUDIO)
65# define CPIN_AUDIO
66# define CPIN_SET_DIRECTION DDRC |= _BV(PORTC4);
67# define INIT_AUDIO_COUNTER_3 TCCR3A = (0 << COM3C1) | (0 << COM3C0) | (1 << WGM31) | (0 << WGM30);
68# define ENABLE_AUDIO_COUNTER_3_ISR TIMSK3 |= _BV(OCIE3C)
69# define DISABLE_AUDIO_COUNTER_3_ISR TIMSK3 &= ~_BV(OCIE3C)
70# define ENABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A |= _BV(COM3C1);
71# define DISABLE_AUDIO_COUNTER_3_OUTPUT TCCR3A &= ~(_BV(COM3C1) | _BV(COM3C0));
72# define TIMER_3_PERIOD ICR3
73# define TIMER_3_DUTY_CYCLE OCR3C
74# define TIMER3_AUDIO_vect TIMER3_COMPC_vect
75#endif
76
77#if defined(B5_AUDIO)
78# define BPIN_AUDIO
79# define BPIN_SET_DIRECTION DDRB |= _BV(PORTB5);
80# define INIT_AUDIO_COUNTER_1 TCCR1A = (0 << COM1A1) | (0 << COM1A0) | (1 << WGM11) | (0 << WGM10);
81# define ENABLE_AUDIO_COUNTER_1_ISR TIMSK1 |= _BV(OCIE1A)
82# define DISABLE_AUDIO_COUNTER_1_ISR TIMSK1 &= ~_BV(OCIE1A)
83# define ENABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A |= _BV(COM1A1);
84# define DISABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A &= ~(_BV(COM1A1) | _BV(COM1A0));
85# define TIMER_1_PERIOD ICR1
86# define TIMER_1_DUTY_CYCLE OCR1A
87# define TIMER1_AUDIO_vect TIMER1_COMPA_vect
88#endif
89#if defined(B6_AUDIO)
90# define BPIN_AUDIO
91# define BPIN_SET_DIRECTION DDRB |= _BV(PORTB6);
92# define INIT_AUDIO_COUNTER_1 TCCR1A = (0 << COM1B1) | (0 << COM1B0) | (1 << WGM11) | (0 << WGM10);
93# define ENABLE_AUDIO_COUNTER_1_ISR TIMSK1 |= _BV(OCIE1B)
94# define DISABLE_AUDIO_COUNTER_1_ISR TIMSK1 &= ~_BV(OCIE1B)
95# define ENABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A |= _BV(COM1B1);
96# define DISABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A &= ~(_BV(COM1B1) | _BV(COM1B0));
97# define TIMER_1_PERIOD ICR1
98# define TIMER_1_DUTY_CYCLE OCR1B
99# define TIMER1_AUDIO_vect TIMER1_COMPB_vect
100#endif
101#if defined(B7_AUDIO)
102# define BPIN_AUDIO
103# define BPIN_SET_DIRECTION DDRB |= _BV(PORTB7);
104# define INIT_AUDIO_COUNTER_1 TCCR1A = (0 << COM1C1) | (0 << COM1C0) | (1 << WGM11) | (0 << WGM10);
105# define ENABLE_AUDIO_COUNTER_1_ISR TIMSK1 |= _BV(OCIE1C)
106# define DISABLE_AUDIO_COUNTER_1_ISR TIMSK1 &= ~_BV(OCIE1C)
107# define ENABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A |= _BV(COM1C1);
108# define DISABLE_AUDIO_COUNTER_1_OUTPUT TCCR1A &= ~(_BV(COM1C1) | _BV(COM1C0));
109# define TIMER_1_PERIOD ICR1
110# define TIMER_1_DUTY_CYCLE OCR1C
111# define TIMER1_AUDIO_vect TIMER1_COMPC_vect
112#endif
113
114#if !defined(BPIN_AUDIO) && !defined(CPIN_AUDIO)
115# error "Audio feature enabled, but no suitable pin selected - see docs/feature_audio.md under the AVR settings for available options."
116#endif
117
118// -----------------------------------------------------------------------------
119
120int voices = 0;
121int voice_place = 0;
122float frequency = 0;
123float frequency_alt = 0;
124int volume = 0;
125long position = 0;
126
127float frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0};
128int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0};
129bool sliding = false;
130
131float place = 0;
132
133uint8_t* sample;
134uint16_t sample_length = 0;
135
136bool playing_notes = false;
137bool playing_note = false;
138float note_frequency = 0;
139float note_length = 0;
140uint8_t note_tempo = TEMPO_DEFAULT;
141float note_timbre = TIMBRE_DEFAULT;
142uint16_t note_position = 0;
143float (*notes_pointer)[][2];
144uint16_t notes_count;
145bool notes_repeat;
146bool note_resting = false;
147
148uint16_t current_note = 0;
149uint8_t rest_counter = 0;
150
151#ifdef VIBRATO_ENABLE
152float vibrato_counter = 0;
153float vibrato_strength = .5;
154float vibrato_rate = 0.125;
155#endif
156
157float polyphony_rate = 0;
158
159static bool audio_initialized = false;
160
161audio_config_t audio_config;
162
163uint16_t envelope_index = 0;
164bool glissando = true;
165
166#ifndef STARTUP_SONG
167# define STARTUP_SONG SONG(STARTUP_SOUND)
168#endif
169#ifndef AUDIO_ON_SONG
170# define AUDIO_ON_SONG SONG(AUDIO_ON_SOUND)
171#endif
172#ifndef AUDIO_OFF_SONG
173# define AUDIO_OFF_SONG SONG(AUDIO_OFF_SOUND)
174#endif
175float startup_song[][2] = STARTUP_SONG;
176float audio_on_song[][2] = AUDIO_ON_SONG;
177float audio_off_song[][2] = AUDIO_OFF_SONG;
178
179void audio_init() {
180 // Check EEPROM
181 if (!eeconfig_is_enabled()) {
182 eeconfig_init();
183 }
184 audio_config.raw = eeconfig_read_audio();
185
186 if (!audio_initialized) {
187// Set audio ports as output
188#ifdef CPIN_AUDIO
189 CPIN_SET_DIRECTION
190 DISABLE_AUDIO_COUNTER_3_ISR;
191#endif
192#ifdef BPIN_AUDIO
193 BPIN_SET_DIRECTION
194 DISABLE_AUDIO_COUNTER_1_ISR;
195#endif
196
197// TCCR3A / TCCR3B: Timer/Counter #3 Control Registers TCCR3A/TCCR3B, TCCR1A/TCCR1B
198// Compare Output Mode (COM3An and COM1An) = 0b00 = Normal port operation
199// OC3A -- PC6
200// OC3B -- PC5
201// OC3C -- PC4
202// OC1A -- PB5
203// OC1B -- PB6
204// OC1C -- PB7
205
206// Waveform Generation Mode (WGM3n) = 0b1110 = Fast PWM Mode 14. Period = ICR3, Duty Cycle OCR3A)
207// OCR3A - PC6
208// OCR3B - PC5
209// OCR3C - PC4
210// OCR1A - PB5
211// OCR1B - PB6
212// OCR1C - PB7
213
214// Clock Select (CS3n) = 0b010 = Clock / 8
215#ifdef CPIN_AUDIO
216 INIT_AUDIO_COUNTER_3
217 TCCR3B = (1 << WGM33) | (1 << WGM32) | (0 << CS32) | (1 << CS31) | (0 << CS30);
218 TIMER_3_PERIOD = (uint16_t)(((float)F_CPU) / (440 * CPU_PRESCALER));
219 TIMER_3_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (440 * CPU_PRESCALER)) * note_timbre);
220#endif
221#ifdef BPIN_AUDIO
222 INIT_AUDIO_COUNTER_1
223 TCCR1B = (1 << WGM13) | (1 << WGM12) | (0 << CS12) | (1 << CS11) | (0 << CS10);
224 TIMER_1_PERIOD = (uint16_t)(((float)F_CPU) / (440 * CPU_PRESCALER));
225 TIMER_1_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (440 * CPU_PRESCALER)) * note_timbre);
226#endif
227
228 audio_initialized = true;
229 }
230}
231
232void audio_startup() {
233 if (audio_config.enable) {
234 PLAY_SONG(startup_song);
235 }
236}
237
238void stop_all_notes() {
239 dprintf("audio stop all notes");
240
241 if (!audio_initialized) {
242 audio_init();
243 }
244 voices = 0;
245
246#ifdef CPIN_AUDIO
247 DISABLE_AUDIO_COUNTER_3_ISR;
248 DISABLE_AUDIO_COUNTER_3_OUTPUT;
249#endif
250
251#ifdef BPIN_AUDIO
252 DISABLE_AUDIO_COUNTER_1_ISR;
253 DISABLE_AUDIO_COUNTER_1_OUTPUT;
254#endif
255
256 playing_notes = false;
257 playing_note = false;
258 frequency = 0;
259 frequency_alt = 0;
260 volume = 0;
261
262 for (uint8_t i = 0; i < 8; i++) {
263 frequencies[i] = 0;
264 volumes[i] = 0;
265 }
266}
267
268void stop_note(float freq) {
269 dprintf("audio stop note freq=%d", (int)freq);
270
271 if (playing_note) {
272 if (!audio_initialized) {
273 audio_init();
274 }
275 for (int i = 7; i >= 0; i--) {
276 if (frequencies[i] == freq) {
277 frequencies[i] = 0;
278 volumes[i] = 0;
279 for (int j = i; (j < 7); j++) {
280 frequencies[j] = frequencies[j + 1];
281 frequencies[j + 1] = 0;
282 volumes[j] = volumes[j + 1];
283 volumes[j + 1] = 0;
284 }
285 break;
286 }
287 }
288 voices--;
289 if (voices < 0) voices = 0;
290 if (voice_place >= voices) {
291 voice_place = 0;
292 }
293 if (voices == 0) {
294#ifdef CPIN_AUDIO
295 DISABLE_AUDIO_COUNTER_3_ISR;
296 DISABLE_AUDIO_COUNTER_3_OUTPUT;
297#endif
298#ifdef BPIN_AUDIO
299 DISABLE_AUDIO_COUNTER_1_ISR;
300 DISABLE_AUDIO_COUNTER_1_OUTPUT;
301#endif
302 frequency = 0;
303 frequency_alt = 0;
304 volume = 0;
305 playing_note = false;
306 }
307 }
308}
309
310#ifdef VIBRATO_ENABLE
311
312float mod(float a, int b) {
313 float r = fmod(a, b);
314 return r < 0 ? r + b : r;
315}
316
317float vibrato(float average_freq) {
318# ifdef VIBRATO_STRENGTH_ENABLE
319 float vibrated_freq = average_freq * pow(vibrato_lut[(int)vibrato_counter], vibrato_strength);
320# else
321 float vibrated_freq = average_freq * vibrato_lut[(int)vibrato_counter];
322# endif
323 vibrato_counter = mod((vibrato_counter + vibrato_rate * (1.0 + 440.0 / average_freq)), VIBRATO_LUT_LENGTH);
324 return vibrated_freq;
325}
326
327#endif
328
329#ifdef CPIN_AUDIO
330ISR(TIMER3_AUDIO_vect) {
331 float freq;
332
333 if (playing_note) {
334 if (voices > 0) {
335# ifdef BPIN_AUDIO
336 float freq_alt = 0;
337 if (voices > 1) {
338 if (polyphony_rate == 0) {
339 if (glissando) {
340 if (frequency_alt != 0 && frequency_alt < frequencies[voices - 2] && frequency_alt < frequencies[voices - 2] * pow(2, -440 / frequencies[voices - 2] / 12 / 2)) {
341 frequency_alt = frequency_alt * pow(2, 440 / frequency_alt / 12 / 2);
342 } else if (frequency_alt != 0 && frequency_alt > frequencies[voices - 2] && frequency_alt > frequencies[voices - 2] * pow(2, 440 / frequencies[voices - 2] / 12 / 2)) {
343 frequency_alt = frequency_alt * pow(2, -440 / frequency_alt / 12 / 2);
344 } else {
345 frequency_alt = frequencies[voices - 2];
346 }
347 } else {
348 frequency_alt = frequencies[voices - 2];
349 }
350
351# ifdef VIBRATO_ENABLE
352 if (vibrato_strength > 0) {
353 freq_alt = vibrato(frequency_alt);
354 } else {
355 freq_alt = frequency_alt;
356 }
357# else
358 freq_alt = frequency_alt;
359# endif
360 }
361
362 if (envelope_index < 65535) {
363 envelope_index++;
364 }
365
366 freq_alt = voice_envelope(freq_alt);
367
368 if (freq_alt < 30.517578125) {
369 freq_alt = 30.52;
370 }
371
372 TIMER_1_PERIOD = (uint16_t)(((float)F_CPU) / (freq_alt * CPU_PRESCALER));
373 TIMER_1_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (freq_alt * CPU_PRESCALER)) * note_timbre);
374 }
375# endif
376
377 if (polyphony_rate > 0) {
378 if (voices > 1) {
379 voice_place %= voices;
380 if (place++ > (frequencies[voice_place] / polyphony_rate / CPU_PRESCALER)) {
381 voice_place = (voice_place + 1) % voices;
382 place = 0.0;
383 }
384 }
385
386# ifdef VIBRATO_ENABLE
387 if (vibrato_strength > 0) {
388 freq = vibrato(frequencies[voice_place]);
389 } else {
390 freq = frequencies[voice_place];
391 }
392# else
393 freq = frequencies[voice_place];
394# endif
395 } else {
396 if (glissando) {
397 if (frequency != 0 && frequency < frequencies[voices - 1] && frequency < frequencies[voices - 1] * pow(2, -440 / frequencies[voices - 1] / 12 / 2)) {
398 frequency = frequency * pow(2, 440 / frequency / 12 / 2);
399 } else if (frequency != 0 && frequency > frequencies[voices - 1] && frequency > frequencies[voices - 1] * pow(2, 440 / frequencies[voices - 1] / 12 / 2)) {
400 frequency = frequency * pow(2, -440 / frequency / 12 / 2);
401 } else {
402 frequency = frequencies[voices - 1];
403 }
404 } else {
405 frequency = frequencies[voices - 1];
406 }
407
408# ifdef VIBRATO_ENABLE
409 if (vibrato_strength > 0) {
410 freq = vibrato(frequency);
411 } else {
412 freq = frequency;
413 }
414# else
415 freq = frequency;
416# endif
417 }
418
419 if (envelope_index < 65535) {
420 envelope_index++;
421 }
422
423 freq = voice_envelope(freq);
424
425 if (freq < 30.517578125) {
426 freq = 30.52;
427 }
428
429 TIMER_3_PERIOD = (uint16_t)(((float)F_CPU) / (freq * CPU_PRESCALER));
430 TIMER_3_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre);
431 }
432 }
433
434 if (playing_notes) {
435 if (note_frequency > 0) {
436# ifdef VIBRATO_ENABLE
437 if (vibrato_strength > 0) {
438 freq = vibrato(note_frequency);
439 } else {
440 freq = note_frequency;
441 }
442# else
443 freq = note_frequency;
444# endif
445
446 if (envelope_index < 65535) {
447 envelope_index++;
448 }
449 freq = voice_envelope(freq);
450
451 TIMER_3_PERIOD = (uint16_t)(((float)F_CPU) / (freq * CPU_PRESCALER));
452 TIMER_3_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre);
453 } else {
454 TIMER_3_PERIOD = 0;
455 TIMER_3_DUTY_CYCLE = 0;
456 }
457
458 note_position++;
459 bool end_of_note = false;
460 if (TIMER_3_PERIOD > 0) {
461 if (!note_resting)
462 end_of_note = (note_position >= (note_length / TIMER_3_PERIOD * 0xFFFF - 1));
463 else
464 end_of_note = (note_position >= (note_length));
465 } else {
466 end_of_note = (note_position >= (note_length));
467 }
468
469 if (end_of_note) {
470 current_note++;
471 if (current_note >= notes_count) {
472 if (notes_repeat) {
473 current_note = 0;
474 } else {
475 DISABLE_AUDIO_COUNTER_3_ISR;
476 DISABLE_AUDIO_COUNTER_3_OUTPUT;
477 playing_notes = false;
478 return;
479 }
480 }
481 if (!note_resting) {
482 note_resting = true;
483 current_note--;
484 if ((*notes_pointer)[current_note][0] == (*notes_pointer)[current_note + 1][0]) {
485 note_frequency = 0;
486 note_length = 1;
487 } else {
488 note_frequency = (*notes_pointer)[current_note][0];
489 note_length = 1;
490 }
491 } else {
492 note_resting = false;
493 envelope_index = 0;
494 note_frequency = (*notes_pointer)[current_note][0];
495 note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100);
496 }
497
498 note_position = 0;
499 }
500 }
501
502 if (!audio_config.enable) {
503 playing_notes = false;
504 playing_note = false;
505 }
506}
507#endif
508
509#ifdef BPIN_AUDIO
510ISR(TIMER1_AUDIO_vect) {
511# if defined(BPIN_AUDIO) && !defined(CPIN_AUDIO)
512 float freq = 0;
513
514 if (playing_note) {
515 if (voices > 0) {
516 if (polyphony_rate > 0) {
517 if (voices > 1) {
518 voice_place %= voices;
519 if (place++ > (frequencies[voice_place] / polyphony_rate / CPU_PRESCALER)) {
520 voice_place = (voice_place + 1) % voices;
521 place = 0.0;
522 }
523 }
524
525# ifdef VIBRATO_ENABLE
526 if (vibrato_strength > 0) {
527 freq = vibrato(frequencies[voice_place]);
528 } else {
529 freq = frequencies[voice_place];
530 }
531# else
532 freq = frequencies[voice_place];
533# endif
534 } else {
535 if (glissando) {
536 if (frequency != 0 && frequency < frequencies[voices - 1] && frequency < frequencies[voices - 1] * pow(2, -440 / frequencies[voices - 1] / 12 / 2)) {
537 frequency = frequency * pow(2, 440 / frequency / 12 / 2);
538 } else if (frequency != 0 && frequency > frequencies[voices - 1] && frequency > frequencies[voices - 1] * pow(2, 440 / frequencies[voices - 1] / 12 / 2)) {
539 frequency = frequency * pow(2, -440 / frequency / 12 / 2);
540 } else {
541 frequency = frequencies[voices - 1];
542 }
543 } else {
544 frequency = frequencies[voices - 1];
545 }
546
547# ifdef VIBRATO_ENABLE
548 if (vibrato_strength > 0) {
549 freq = vibrato(frequency);
550 } else {
551 freq = frequency;
552 }
553# else
554 freq = frequency;
555# endif
556 }
557
558 if (envelope_index < 65535) {
559 envelope_index++;
560 }
561
562 freq = voice_envelope(freq);
563
564 if (freq < 30.517578125) {
565 freq = 30.52;
566 }
567
568 TIMER_1_PERIOD = (uint16_t)(((float)F_CPU) / (freq * CPU_PRESCALER));
569 TIMER_1_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre);
570 }
571 }
572
573 if (playing_notes) {
574 if (note_frequency > 0) {
575# ifdef VIBRATO_ENABLE
576 if (vibrato_strength > 0) {
577 freq = vibrato(note_frequency);
578 } else {
579 freq = note_frequency;
580 }
581# else
582 freq = note_frequency;
583# endif
584
585 if (envelope_index < 65535) {
586 envelope_index++;
587 }
588 freq = voice_envelope(freq);
589
590 TIMER_1_PERIOD = (uint16_t)(((float)F_CPU) / (freq * CPU_PRESCALER));
591 TIMER_1_DUTY_CYCLE = (uint16_t)((((float)F_CPU) / (freq * CPU_PRESCALER)) * note_timbre);
592 } else {
593 TIMER_1_PERIOD = 0;
594 TIMER_1_DUTY_CYCLE = 0;
595 }
596
597 note_position++;
598 bool end_of_note = false;
599 if (TIMER_1_PERIOD > 0) {
600 if (!note_resting)
601 end_of_note = (note_position >= (note_length / TIMER_1_PERIOD * 0xFFFF - 1));
602 else
603 end_of_note = (note_position >= (note_length));
604 } else {
605 end_of_note = (note_position >= (note_length));
606 }
607
608 if (end_of_note) {
609 current_note++;
610 if (current_note >= notes_count) {
611 if (notes_repeat) {
612 current_note = 0;
613 } else {
614 DISABLE_AUDIO_COUNTER_1_ISR;
615 DISABLE_AUDIO_COUNTER_1_OUTPUT;
616 playing_notes = false;
617 return;
618 }
619 }
620 if (!note_resting) {
621 note_resting = true;
622 current_note--;
623 if ((*notes_pointer)[current_note][0] == (*notes_pointer)[current_note + 1][0]) {
624 note_frequency = 0;
625 note_length = 1;
626 } else {
627 note_frequency = (*notes_pointer)[current_note][0];
628 note_length = 1;
629 }
630 } else {
631 note_resting = false;
632 envelope_index = 0;
633 note_frequency = (*notes_pointer)[current_note][0];
634 note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100);
635 }
636
637 note_position = 0;
638 }
639 }
640
641 if (!audio_config.enable) {
642 playing_notes = false;
643 playing_note = false;
644 }
645# endif
646}
647#endif
648
649void play_note(float freq, int vol) {
650 dprintf("audio play note freq=%d vol=%d", (int)freq, vol);
651
652 if (!audio_initialized) {
653 audio_init();
654 }
655
656 if (audio_config.enable && voices < 8) {
657#ifdef CPIN_AUDIO
658 DISABLE_AUDIO_COUNTER_3_ISR;
659#endif
660#ifdef BPIN_AUDIO
661 DISABLE_AUDIO_COUNTER_1_ISR;
662#endif
663
664 // Cancel notes if notes are playing
665 if (playing_notes) stop_all_notes();
666
667 playing_note = true;
668
669 envelope_index = 0;
670
671 if (freq > 0) {
672 frequencies[voices] = freq;
673 volumes[voices] = vol;
674 voices++;
675 }
676
677#ifdef CPIN_AUDIO
678 ENABLE_AUDIO_COUNTER_3_ISR;
679 ENABLE_AUDIO_COUNTER_3_OUTPUT;
680#endif
681#ifdef BPIN_AUDIO
682# ifdef CPIN_AUDIO
683 if (voices > 1) {
684 ENABLE_AUDIO_COUNTER_1_ISR;
685 ENABLE_AUDIO_COUNTER_1_OUTPUT;
686 }
687# else
688 ENABLE_AUDIO_COUNTER_1_ISR;
689 ENABLE_AUDIO_COUNTER_1_OUTPUT;
690# endif
691#endif
692 }
693}
694
695void play_notes(float (*np)[][2], uint16_t n_count, bool n_repeat) {
696 if (!audio_initialized) {
697 audio_init();
698 }
699
700 if (audio_config.enable) {
701#ifdef CPIN_AUDIO
702 DISABLE_AUDIO_COUNTER_3_ISR;
703#endif
704#ifdef BPIN_AUDIO
705 DISABLE_AUDIO_COUNTER_1_ISR;
706#endif
707
708 // Cancel note if a note is playing
709 if (playing_note) stop_all_notes();
710
711 playing_notes = true;
712
713 notes_pointer = np;
714 notes_count = n_count;
715 notes_repeat = n_repeat;
716
717 place = 0;
718 current_note = 0;
719
720 note_frequency = (*notes_pointer)[current_note][0];
721 note_length = ((*notes_pointer)[current_note][1] / 4) * (((float)note_tempo) / 100);
722 note_position = 0;
723
724#ifdef CPIN_AUDIO
725 ENABLE_AUDIO_COUNTER_3_ISR;
726 ENABLE_AUDIO_COUNTER_3_OUTPUT;
727#endif
728#ifdef BPIN_AUDIO
729# ifndef CPIN_AUDIO
730 ENABLE_AUDIO_COUNTER_1_ISR;
731 ENABLE_AUDIO_COUNTER_1_OUTPUT;
732# endif
733#endif
734 }
735}
736
737bool is_playing_notes(void) { return playing_notes; }
738
739bool is_audio_on(void) { return (audio_config.enable != 0); }
740
741void audio_toggle(void) {
742 audio_config.enable ^= 1;
743 eeconfig_update_audio(audio_config.raw);
744 if (audio_config.enable) audio_on_user();
745}
746
747void audio_on(void) {
748 audio_config.enable = 1;
749 eeconfig_update_audio(audio_config.raw);
750 audio_on_user();
751 PLAY_SONG(audio_on_song);
752}
753
754void audio_off(void) {
755 PLAY_SONG(audio_off_song);
756 wait_ms(100);
757 stop_all_notes();
758 audio_config.enable = 0;
759 eeconfig_update_audio(audio_config.raw);
760}
761
762#ifdef VIBRATO_ENABLE
763
764// Vibrato rate functions
765
766void set_vibrato_rate(float rate) { vibrato_rate = rate; }
767
768void increase_vibrato_rate(float change) { vibrato_rate *= change; }
769
770void decrease_vibrato_rate(float change) { vibrato_rate /= change; }
771
772# ifdef VIBRATO_STRENGTH_ENABLE
773
774void set_vibrato_strength(float strength) { vibrato_strength = strength; }
775
776void increase_vibrato_strength(float change) { vibrato_strength *= change; }
777
778void decrease_vibrato_strength(float change) { vibrato_strength /= change; }
779
780# endif /* VIBRATO_STRENGTH_ENABLE */
781
782#endif /* VIBRATO_ENABLE */
783
784// Polyphony functions
785
786void set_polyphony_rate(float rate) { polyphony_rate = rate; }
787
788void enable_polyphony() { polyphony_rate = 5; }
789
790void disable_polyphony() { polyphony_rate = 0; }
791
792void increase_polyphony_rate(float change) { polyphony_rate *= change; }
793
794void decrease_polyphony_rate(float change) { polyphony_rate /= change; }
795
796// Timbre function
797
798void set_timbre(float timbre) { note_timbre = timbre; }
799
800// Tempo functions
801
802void set_tempo(uint8_t tempo) { note_tempo = tempo; }
803
804void decrease_tempo(uint8_t tempo_change) { note_tempo += tempo_change; }
805
806void increase_tempo(uint8_t tempo_change) {
807 if (note_tempo - tempo_change < 10) {
808 note_tempo = 10;
809 } else {
810 note_tempo -= tempo_change;
811 }
812}