diff options
author | Fredric Silberberg <fred@silberberg.xyz> | 2017-08-06 01:50:20 -0700 |
---|---|---|
committer | Jack Humbert <jack.humb@gmail.com> | 2017-08-08 10:02:53 -0400 |
commit | 8e1be7c792c4c9f65ba7e990f2a773a23b40d20c (patch) | |
tree | c82bdd82f0aa881e541f6b44fb73d3a54fdf886d /quantum/process_keycode/process_key_lock.c | |
parent | 7a9fb7c96b876cf0d6c44c4649d3504572e56fa3 (diff) | |
download | qmk_firmware-8e1be7c792c4c9f65ba7e990f2a773a23b40d20c.tar.gz qmk_firmware-8e1be7c792c4c9f65ba7e990f2a773a23b40d20c.zip |
Initial implementation of the key_lock feature.
Diffstat (limited to 'quantum/process_keycode/process_key_lock.c')
-rw-r--r-- | quantum/process_keycode/process_key_lock.c | 120 |
1 files changed, 120 insertions, 0 deletions
diff --git a/quantum/process_keycode/process_key_lock.c b/quantum/process_keycode/process_key_lock.c new file mode 100644 index 000000000..60b0fcd9b --- /dev/null +++ b/quantum/process_keycode/process_key_lock.c | |||
@@ -0,0 +1,120 @@ | |||
1 | /* Copyright 2017 Fredric Silberberg | ||
2 | * | ||
3 | * This program is free software: you can redistribute it and/or modify | ||
4 | * it under the terms of the GNU General Public License as published by | ||
5 | * the Free Software Foundation, either version 2 of the License, or | ||
6 | * (at your option) any later version. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
11 | * GNU General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public License | ||
14 | * along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
15 | */ | ||
16 | |||
17 | #include "inttypes.h" | ||
18 | #include "stdint.h" | ||
19 | #include "process_key_lock.h" | ||
20 | |||
21 | #define SHIFT(shift) (((uint64_t)1) << (shift)) | ||
22 | #define GET_KEY_ARRAY(code) (((code) < 0x40) ? key_state[0] : \ | ||
23 | ((code) < 0x80) ? key_state[1] : \ | ||
24 | ((code) < 0xC0) ? key_state[2] : key_state[3]) | ||
25 | #define GET_CODE_INDEX(code) (((code) < 0x40) ? (code) : \ | ||
26 | ((code) < 0x80) ? (code) - 0x40 : \ | ||
27 | ((code) < 0xC0) ? (code) - 0x80 : (code) - 0xC0) | ||
28 | #define KEY_STATE(code) (GET_KEY_ARRAY(code) & SHIFT(GET_CODE_INDEX(code))) == SHIFT(GET_CODE_INDEX(code)) | ||
29 | #define SET_KEY_ARRAY_STATE(code, val) do { \ | ||
30 | switch (code) { \ | ||
31 | case 0x00 ... 0x3F: \ | ||
32 | key_state[0] = (val); \ | ||
33 | break; \ | ||
34 | case 0x40 ... 0x7F: \ | ||
35 | key_state[1] = (val); \ | ||
36 | break; \ | ||
37 | case 0x80 ... 0xBF: \ | ||
38 | key_state[2] = (val); \ | ||
39 | break; \ | ||
40 | case 0xC0 ... 0xFF: \ | ||
41 | key_state[3] = (val); \ | ||
42 | break; \ | ||
43 | } \ | ||
44 | } while(0) | ||
45 | #define SET_KEY_STATE(code) SET_KEY_ARRAY_STATE(code, (GET_KEY_ARRAY(code) | SHIFT(GET_CODE_INDEX(code)))) | ||
46 | #define UNSET_KEY_STATE(code) SET_KEY_ARRAY_STATE(code, (GET_KEY_ARRAY(code)) & ~(SHIFT(GET_CODE_INDEX(code)))) | ||
47 | #define IS_STANDARD_KEYCODE(code) ((code) <= 0xFF) | ||
48 | #define print_hex64(num) do { print_hex32((num & 0xFFFFFFFF00000000) >> 32); print_hex32(num & 0x00000000FFFFFFFF); } while (0) | ||
49 | |||
50 | // Locked key state. This is an array of 256 bits, one for each of the standard keys supported qmk. | ||
51 | uint64_t key_state[4] = { 0x0, 0x0, 0x0, 0x0 }; | ||
52 | bool watching = false; | ||
53 | |||
54 | bool process_key_lock(uint16_t keycode, keyrecord_t *record) { | ||
55 | // We start by categorizing the keypress event. In the event of a down | ||
56 | // event, there are several possibilities: | ||
57 | // 1. The key is not being locked, and we are not watching for new keys. | ||
58 | // In this case, we bail immediately. This is the common case for down events. | ||
59 | // 2. The key was locked, and we need to unlock it. In this case, we will | ||
60 | // reset the state in our map and return false. When the user releases the | ||
61 | // key, the up event will no longer be masked and the OS will observe the | ||
62 | // released key. | ||
63 | // 3. KC_LOCK was just pressed. In this case, we set up the state machine | ||
64 | // to watch for the next key down event, and finish processing | ||
65 | // 4. The keycode is below 0xFF, and we are watching for new keys. In this case, | ||
66 | // we will send the key down event to the os, and set the key_state for that | ||
67 | // key to mask the up event. | ||
68 | // 5. The keycode is above 0xFF, and we're wathing for new keys. In this case, | ||
69 | // the user pressed a key that we cannot "lock", as it's a series of keys, | ||
70 | // or a macro invocation, or a layer transition, or a custom-defined key, or | ||
71 | // or some other arbitrary code. In this case, we bail immediately, reset | ||
72 | // our watch state, and return true. | ||
73 | // | ||
74 | // In the event of an up event, there are these possibilities: | ||
75 | // 1. The key is not being locked. In this case, we return true and bail | ||
76 | // immediately. This is the common case. | ||
77 | // 2. The key is being locked. In this case, we will mask the up event | ||
78 | // by returning false, so the OS never sees that the key was released | ||
79 | // until the user pressed the key again. | ||
80 | if (record->event.pressed) { | ||
81 | // Non-standard keycode, reset and return | ||
82 | if (!(IS_STANDARD_KEYCODE(keycode) || keycode == KC_LOCK)) { | ||
83 | watching = false; | ||
84 | return true; | ||
85 | } | ||
86 | |||
87 | // If we're already watching, turn off the watch. | ||
88 | if (keycode == KC_LOCK) { | ||
89 | watching = !watching; | ||
90 | return false; | ||
91 | } | ||
92 | |||
93 | if (IS_STANDARD_KEYCODE(keycode)) { | ||
94 | // We check watching first. This is so that in the following scenario, we continue to | ||
95 | // hold the key: KC_LOCK, KC_F, KC_LOCK, KC_F | ||
96 | // If we checked in reverse order, we'd end up holding the key pressed after the second | ||
97 | // KC_F press is registered, when the user likely meant to hold F | ||
98 | if (watching) { | ||
99 | watching = false; | ||
100 | SET_KEY_STATE(keycode); | ||
101 | // Let the standard keymap send the keycode down event. The up event will be masked. | ||
102 | return true; | ||
103 | } | ||
104 | |||
105 | if (KEY_STATE(keycode)) { | ||
106 | UNSET_KEY_STATE(keycode); | ||
107 | // The key is already held, stop this process. The up event will be sent when the user | ||
108 | // releases the key. | ||
109 | return false; | ||
110 | } | ||
111 | } | ||
112 | |||
113 | // Either the key isn't a standard key, or we need to send the down event. Continue standard | ||
114 | // processing | ||
115 | return true; | ||
116 | } else { | ||
117 | // Stop processing if it's a standard key and we're masking up. | ||
118 | return !(IS_STANDARD_KEYCODE(keycode) && KEY_STATE(keycode)); | ||
119 | } | ||
120 | } | ||