diff options
Diffstat (limited to 'drivers/oled/ssd1306_sh1106.c')
-rw-r--r-- | drivers/oled/ssd1306_sh1106.c | 777 |
1 files changed, 777 insertions, 0 deletions
diff --git a/drivers/oled/ssd1306_sh1106.c b/drivers/oled/ssd1306_sh1106.c new file mode 100644 index 000000000..7d4197890 --- /dev/null +++ b/drivers/oled/ssd1306_sh1106.c | |||
@@ -0,0 +1,777 @@ | |||
1 | /* | ||
2 | Copyright 2019 Ryan Caltabiano <https://github.com/XScorpion2> | ||
3 | |||
4 | This program is free software: you can redistribute it and/or modify | ||
5 | it under the terms of the GNU General Public License as published by | ||
6 | the Free Software Foundation, either version 2 of the License, or | ||
7 | (at your option) any later version. | ||
8 | |||
9 | This program is distributed in the hope that it will be useful, | ||
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | GNU General Public License for more details. | ||
13 | |||
14 | You should have received a copy of the GNU General Public License | ||
15 | along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
16 | */ | ||
17 | #include "i2c_master.h" | ||
18 | #include "oled_driver.h" | ||
19 | #include OLED_FONT_H | ||
20 | #include "timer.h" | ||
21 | #include "print.h" | ||
22 | |||
23 | #include <string.h> | ||
24 | |||
25 | #include "progmem.h" | ||
26 | |||
27 | #include "keyboard.h" | ||
28 | |||
29 | // Used commands from spec sheet: https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf | ||
30 | // for SH1106: https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf | ||
31 | |||
32 | // Fundamental Commands | ||
33 | #define CONTRAST 0x81 | ||
34 | #define DISPLAY_ALL_ON 0xA5 | ||
35 | #define DISPLAY_ALL_ON_RESUME 0xA4 | ||
36 | #define NORMAL_DISPLAY 0xA6 | ||
37 | #define INVERT_DISPLAY 0xA7 | ||
38 | #define DISPLAY_ON 0xAF | ||
39 | #define DISPLAY_OFF 0xAE | ||
40 | #define NOP 0xE3 | ||
41 | |||
42 | // Scrolling Commands | ||
43 | #define ACTIVATE_SCROLL 0x2F | ||
44 | #define DEACTIVATE_SCROLL 0x2E | ||
45 | #define SCROLL_RIGHT 0x26 | ||
46 | #define SCROLL_LEFT 0x27 | ||
47 | #define SCROLL_RIGHT_UP 0x29 | ||
48 | #define SCROLL_LEFT_UP 0x2A | ||
49 | |||
50 | // Addressing Setting Commands | ||
51 | #define MEMORY_MODE 0x20 | ||
52 | #define COLUMN_ADDR 0x21 | ||
53 | #define PAGE_ADDR 0x22 | ||
54 | #define PAM_SETCOLUMN_LSB 0x00 | ||
55 | #define PAM_SETCOLUMN_MSB 0x10 | ||
56 | #define PAM_PAGE_ADDR 0xB0 // 0xb0 -- 0xb7 | ||
57 | |||
58 | // Hardware Configuration Commands | ||
59 | #define DISPLAY_START_LINE 0x40 | ||
60 | #define SEGMENT_REMAP 0xA0 | ||
61 | #define SEGMENT_REMAP_INV 0xA1 | ||
62 | #define MULTIPLEX_RATIO 0xA8 | ||
63 | #define COM_SCAN_INC 0xC0 | ||
64 | #define COM_SCAN_DEC 0xC8 | ||
65 | #define DISPLAY_OFFSET 0xD3 | ||
66 | #define COM_PINS 0xDA | ||
67 | #define COM_PINS_SEQ 0x02 | ||
68 | #define COM_PINS_ALT 0x12 | ||
69 | #define COM_PINS_SEQ_LR 0x22 | ||
70 | #define COM_PINS_ALT_LR 0x32 | ||
71 | |||
72 | // Timing & Driving Commands | ||
73 | #define DISPLAY_CLOCK 0xD5 | ||
74 | #define PRE_CHARGE_PERIOD 0xD9 | ||
75 | #define VCOM_DETECT 0xDB | ||
76 | |||
77 | // Advance Graphic Commands | ||
78 | #define FADE_BLINK 0x23 | ||
79 | #define ENABLE_FADE 0x20 | ||
80 | #define ENABLE_BLINK 0x30 | ||
81 | |||
82 | // Charge Pump Commands | ||
83 | #define CHARGE_PUMP 0x8D | ||
84 | |||
85 | // Misc defines | ||
86 | #ifndef OLED_BLOCK_COUNT | ||
87 | # define OLED_BLOCK_COUNT (sizeof(OLED_BLOCK_TYPE) * 8) | ||
88 | #endif | ||
89 | #ifndef OLED_BLOCK_SIZE | ||
90 | # define OLED_BLOCK_SIZE (OLED_MATRIX_SIZE / OLED_BLOCK_COUNT) | ||
91 | #endif | ||
92 | |||
93 | #define OLED_ALL_BLOCKS_MASK (((((OLED_BLOCK_TYPE)1 << (OLED_BLOCK_COUNT - 1)) - 1) << 1) | 1) | ||
94 | |||
95 | // i2c defines | ||
96 | #define I2C_CMD 0x00 | ||
97 | #define I2C_DATA 0x40 | ||
98 | #if defined(__AVR__) | ||
99 | # define I2C_TRANSMIT_P(data) i2c_transmit_P((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT) | ||
100 | #else // defined(__AVR__) | ||
101 | # define I2C_TRANSMIT_P(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT) | ||
102 | #endif // defined(__AVR__) | ||
103 | #define I2C_TRANSMIT(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT) | ||
104 | #define I2C_WRITE_REG(mode, data, size) i2c_writeReg((OLED_DISPLAY_ADDRESS << 1), mode, data, size, OLED_I2C_TIMEOUT) | ||
105 | |||
106 | #define HAS_FLAGS(bits, flags) ((bits & flags) == flags) | ||
107 | |||
108 | // Display buffer's is the same as the OLED memory layout | ||
109 | // this is so we don't end up with rounding errors with | ||
110 | // parts of the display unusable or don't get cleared correctly | ||
111 | // and also allows for drawing & inverting | ||
112 | uint8_t oled_buffer[OLED_MATRIX_SIZE]; | ||
113 | uint8_t * oled_cursor; | ||
114 | OLED_BLOCK_TYPE oled_dirty = 0; | ||
115 | bool oled_initialized = false; | ||
116 | bool oled_active = false; | ||
117 | bool oled_scrolling = false; | ||
118 | bool oled_inverted = false; | ||
119 | uint8_t oled_brightness = OLED_BRIGHTNESS; | ||
120 | oled_rotation_t oled_rotation = 0; | ||
121 | uint8_t oled_rotation_width = 0; | ||
122 | uint8_t oled_scroll_speed = 0; // this holds the speed after being remapped to ssd1306 internal values | ||
123 | uint8_t oled_scroll_start = 0; | ||
124 | uint8_t oled_scroll_end = 7; | ||
125 | #if OLED_TIMEOUT > 0 | ||
126 | uint32_t oled_timeout; | ||
127 | #endif | ||
128 | #if OLED_SCROLL_TIMEOUT > 0 | ||
129 | uint32_t oled_scroll_timeout; | ||
130 | #endif | ||
131 | #if OLED_UPDATE_INTERVAL > 0 | ||
132 | uint16_t oled_update_timeout; | ||
133 | #endif | ||
134 | |||
135 | // Internal variables to reduce math instructions | ||
136 | |||
137 | #if defined(__AVR__) | ||
138 | // identical to i2c_transmit, but for PROGMEM since all initialization is in PROGMEM arrays currently | ||
139 | // probably should move this into i2c_master... | ||
140 | static i2c_status_t i2c_transmit_P(uint8_t address, const uint8_t *data, uint16_t length, uint16_t timeout) { | ||
141 | i2c_status_t status = i2c_start(address | I2C_WRITE, timeout); | ||
142 | |||
143 | for (uint16_t i = 0; i < length && status >= 0; i++) { | ||
144 | status = i2c_write(pgm_read_byte((const char *)data++), timeout); | ||
145 | if (status) break; | ||
146 | } | ||
147 | |||
148 | i2c_stop(); | ||
149 | |||
150 | return status; | ||
151 | } | ||
152 | #endif | ||
153 | |||
154 | // Flips the rendering bits for a character at the current cursor position | ||
155 | static void InvertCharacter(uint8_t *cursor) { | ||
156 | const uint8_t *end = cursor + OLED_FONT_WIDTH; | ||
157 | while (cursor < end) { | ||
158 | *cursor = ~(*cursor); | ||
159 | cursor++; | ||
160 | } | ||
161 | } | ||
162 | |||
163 | bool oled_init(oled_rotation_t rotation) { | ||
164 | #if defined(USE_I2C) && defined(SPLIT_KEYBOARD) | ||
165 | if (!is_keyboard_master()) { | ||
166 | return true; | ||
167 | } | ||
168 | #endif | ||
169 | |||
170 | oled_rotation = oled_init_user(rotation); | ||
171 | if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) { | ||
172 | oled_rotation_width = OLED_DISPLAY_WIDTH; | ||
173 | } else { | ||
174 | oled_rotation_width = OLED_DISPLAY_HEIGHT; | ||
175 | } | ||
176 | i2c_init(); | ||
177 | |||
178 | static const uint8_t PROGMEM display_setup1[] = { | ||
179 | I2C_CMD, | ||
180 | DISPLAY_OFF, | ||
181 | DISPLAY_CLOCK, | ||
182 | 0x80, | ||
183 | MULTIPLEX_RATIO, | ||
184 | OLED_DISPLAY_HEIGHT - 1, | ||
185 | DISPLAY_OFFSET, | ||
186 | 0x00, | ||
187 | DISPLAY_START_LINE | 0x00, | ||
188 | CHARGE_PUMP, | ||
189 | 0x14, | ||
190 | #if (OLED_IC != OLED_IC_SH1106) | ||
191 | // MEMORY_MODE is unsupported on SH1106 (Page Addressing only) | ||
192 | MEMORY_MODE, | ||
193 | 0x00, // Horizontal addressing mode | ||
194 | #endif | ||
195 | }; | ||
196 | if (I2C_TRANSMIT_P(display_setup1) != I2C_STATUS_SUCCESS) { | ||
197 | print("oled_init cmd set 1 failed\n"); | ||
198 | return false; | ||
199 | } | ||
200 | |||
201 | if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_180)) { | ||
202 | static const uint8_t PROGMEM display_normal[] = {I2C_CMD, SEGMENT_REMAP_INV, COM_SCAN_DEC}; | ||
203 | if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) { | ||
204 | print("oled_init cmd normal rotation failed\n"); | ||
205 | return false; | ||
206 | } | ||
207 | } else { | ||
208 | static const uint8_t PROGMEM display_flipped[] = {I2C_CMD, SEGMENT_REMAP, COM_SCAN_INC}; | ||
209 | if (I2C_TRANSMIT_P(display_flipped) != I2C_STATUS_SUCCESS) { | ||
210 | print("display_flipped failed\n"); | ||
211 | return false; | ||
212 | } | ||
213 | } | ||
214 | |||
215 | static const uint8_t PROGMEM display_setup2[] = {I2C_CMD, COM_PINS, OLED_COM_PINS, CONTRAST, OLED_BRIGHTNESS, PRE_CHARGE_PERIOD, 0xF1, VCOM_DETECT, 0x20, DISPLAY_ALL_ON_RESUME, NORMAL_DISPLAY, DEACTIVATE_SCROLL, DISPLAY_ON}; | ||
216 | if (I2C_TRANSMIT_P(display_setup2) != I2C_STATUS_SUCCESS) { | ||
217 | print("display_setup2 failed\n"); | ||
218 | return false; | ||
219 | } | ||
220 | |||
221 | #if OLED_TIMEOUT > 0 | ||
222 | oled_timeout = timer_read32() + OLED_TIMEOUT; | ||
223 | #endif | ||
224 | #if OLED_SCROLL_TIMEOUT > 0 | ||
225 | oled_scroll_timeout = timer_read32() + OLED_SCROLL_TIMEOUT; | ||
226 | #endif | ||
227 | |||
228 | oled_clear(); | ||
229 | oled_initialized = true; | ||
230 | oled_active = true; | ||
231 | oled_scrolling = false; | ||
232 | return true; | ||
233 | } | ||
234 | |||
235 | __attribute__((weak)) oled_rotation_t oled_init_user(oled_rotation_t rotation) { return rotation; } | ||
236 | |||
237 | void oled_clear(void) { | ||
238 | memset(oled_buffer, 0, sizeof(oled_buffer)); | ||
239 | oled_cursor = &oled_buffer[0]; | ||
240 | oled_dirty = OLED_ALL_BLOCKS_MASK; | ||
241 | } | ||
242 | |||
243 | static void calc_bounds(uint8_t update_start, uint8_t *cmd_array) { | ||
244 | // Calculate commands to set memory addressing bounds. | ||
245 | uint8_t start_page = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_WIDTH; | ||
246 | uint8_t start_column = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_WIDTH; | ||
247 | #if (OLED_IC == OLED_IC_SH1106) | ||
248 | // Commands for Page Addressing Mode. Sets starting page and column; has no end bound. | ||
249 | // Column value must be split into high and low nybble and sent as two commands. | ||
250 | cmd_array[0] = PAM_PAGE_ADDR | start_page; | ||
251 | cmd_array[1] = PAM_SETCOLUMN_LSB | ((OLED_COLUMN_OFFSET + start_column) & 0x0f); | ||
252 | cmd_array[2] = PAM_SETCOLUMN_MSB | ((OLED_COLUMN_OFFSET + start_column) >> 4 & 0x0f); | ||
253 | cmd_array[3] = NOP; | ||
254 | cmd_array[4] = NOP; | ||
255 | cmd_array[5] = NOP; | ||
256 | #else | ||
257 | // Commands for use in Horizontal Addressing mode. | ||
258 | cmd_array[1] = start_column; | ||
259 | cmd_array[4] = start_page; | ||
260 | cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) % OLED_DISPLAY_WIDTH + cmd_array[1]; | ||
261 | cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) / OLED_DISPLAY_WIDTH - 1; | ||
262 | #endif | ||
263 | } | ||
264 | |||
265 | static void calc_bounds_90(uint8_t update_start, uint8_t *cmd_array) { | ||
266 | cmd_array[1] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8; | ||
267 | cmd_array[4] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT; | ||
268 | cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8 - 1 + cmd_array[1]; | ||
269 | ; | ||
270 | cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) % OLED_DISPLAY_HEIGHT / 8; | ||
271 | } | ||
272 | |||
273 | uint8_t crot(uint8_t a, int8_t n) { | ||
274 | const uint8_t mask = 0x7; | ||
275 | n &= mask; | ||
276 | return a << n | a >> (-n & mask); | ||
277 | } | ||
278 | |||
279 | static void rotate_90(const uint8_t *src, uint8_t *dest) { | ||
280 | for (uint8_t i = 0, shift = 7; i < 8; ++i, --shift) { | ||
281 | uint8_t selector = (1 << i); | ||
282 | for (uint8_t j = 0; j < 8; ++j) { | ||
283 | dest[i] |= crot(src[j] & selector, shift - (int8_t)j); | ||
284 | } | ||
285 | } | ||
286 | } | ||
287 | |||
288 | void oled_render(void) { | ||
289 | if (!oled_initialized) { | ||
290 | return; | ||
291 | } | ||
292 | |||
293 | // Do we have work to do? | ||
294 | oled_dirty &= OLED_ALL_BLOCKS_MASK; | ||
295 | if (!oled_dirty || oled_scrolling) { | ||
296 | return; | ||
297 | } | ||
298 | |||
299 | // Find first dirty block | ||
300 | uint8_t update_start = 0; | ||
301 | while (!(oled_dirty & ((OLED_BLOCK_TYPE)1 << update_start))) { | ||
302 | ++update_start; | ||
303 | } | ||
304 | |||
305 | // Set column & page position | ||
306 | static uint8_t display_start[] = {I2C_CMD, COLUMN_ADDR, 0, OLED_DISPLAY_WIDTH - 1, PAGE_ADDR, 0, OLED_DISPLAY_HEIGHT / 8 - 1}; | ||
307 | if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) { | ||
308 | calc_bounds(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start | ||
309 | } else { | ||
310 | calc_bounds_90(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start | ||
311 | } | ||
312 | |||
313 | // Send column & page position | ||
314 | if (I2C_TRANSMIT(display_start) != I2C_STATUS_SUCCESS) { | ||
315 | print("oled_render offset command failed\n"); | ||
316 | return; | ||
317 | } | ||
318 | |||
319 | if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) { | ||
320 | // Send render data chunk as is | ||
321 | if (I2C_WRITE_REG(I2C_DATA, &oled_buffer[OLED_BLOCK_SIZE * update_start], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) { | ||
322 | print("oled_render data failed\n"); | ||
323 | return; | ||
324 | } | ||
325 | } else { | ||
326 | // Rotate the render chunks | ||
327 | const static uint8_t source_map[] = OLED_SOURCE_MAP; | ||
328 | const static uint8_t target_map[] = OLED_TARGET_MAP; | ||
329 | |||
330 | static uint8_t temp_buffer[OLED_BLOCK_SIZE]; | ||
331 | memset(temp_buffer, 0, sizeof(temp_buffer)); | ||
332 | for (uint8_t i = 0; i < sizeof(source_map); ++i) { | ||
333 | rotate_90(&oled_buffer[OLED_BLOCK_SIZE * update_start + source_map[i]], &temp_buffer[target_map[i]]); | ||
334 | } | ||
335 | |||
336 | // Send render data chunk after rotating | ||
337 | if (I2C_WRITE_REG(I2C_DATA, &temp_buffer[0], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) { | ||
338 | print("oled_render90 data failed\n"); | ||
339 | return; | ||
340 | } | ||
341 | } | ||
342 | |||
343 | // Turn on display if it is off | ||
344 | oled_on(); | ||
345 | |||
346 | // Clear dirty flag | ||
347 | oled_dirty &= ~((OLED_BLOCK_TYPE)1 << update_start); | ||
348 | } | ||
349 | |||
350 | void oled_set_cursor(uint8_t col, uint8_t line) { | ||
351 | uint16_t index = line * oled_rotation_width + col * OLED_FONT_WIDTH; | ||
352 | |||
353 | // Out of bounds? | ||
354 | if (index >= OLED_MATRIX_SIZE) { | ||
355 | index = 0; | ||
356 | } | ||
357 | |||
358 | oled_cursor = &oled_buffer[index]; | ||
359 | } | ||
360 | |||
361 | void oled_advance_page(bool clearPageRemainder) { | ||
362 | uint16_t index = oled_cursor - &oled_buffer[0]; | ||
363 | uint8_t remaining = oled_rotation_width - (index % oled_rotation_width); | ||
364 | |||
365 | if (clearPageRemainder) { | ||
366 | // Remaining Char count | ||
367 | remaining = remaining / OLED_FONT_WIDTH; | ||
368 | |||
369 | // Write empty character until next line | ||
370 | while (remaining--) oled_write_char(' ', false); | ||
371 | } else { | ||
372 | // Next page index out of bounds? | ||
373 | if (index + remaining >= OLED_MATRIX_SIZE) { | ||
374 | index = 0; | ||
375 | remaining = 0; | ||
376 | } | ||
377 | |||
378 | oled_cursor = &oled_buffer[index + remaining]; | ||
379 | } | ||
380 | } | ||
381 | |||
382 | void oled_advance_char(void) { | ||
383 | uint16_t nextIndex = oled_cursor - &oled_buffer[0] + OLED_FONT_WIDTH; | ||
384 | uint8_t remainingSpace = oled_rotation_width - (nextIndex % oled_rotation_width); | ||
385 | |||
386 | // Do we have enough space on the current line for the next character | ||
387 | if (remainingSpace < OLED_FONT_WIDTH) { | ||
388 | nextIndex += remainingSpace; | ||
389 | } | ||
390 | |||
391 | // Did we go out of bounds | ||
392 | if (nextIndex >= OLED_MATRIX_SIZE) { | ||
393 | nextIndex = 0; | ||
394 | } | ||
395 | |||
396 | // Update cursor position | ||
397 | oled_cursor = &oled_buffer[nextIndex]; | ||
398 | } | ||
399 | |||
400 | // Main handler that writes character data to the display buffer | ||
401 | void oled_write_char(const char data, bool invert) { | ||
402 | // Advance to the next line if newline | ||
403 | if (data == '\n') { | ||
404 | // Old source wrote ' ' until end of line... | ||
405 | oled_advance_page(true); | ||
406 | return; | ||
407 | } | ||
408 | |||
409 | if (data == '\r') { | ||
410 | oled_advance_page(false); | ||
411 | return; | ||
412 | } | ||
413 | |||
414 | // copy the current render buffer to check for dirty after | ||
415 | static uint8_t oled_temp_buffer[OLED_FONT_WIDTH]; | ||
416 | memcpy(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH); | ||
417 | |||
418 | _Static_assert(sizeof(font) >= ((OLED_FONT_END + 1 - OLED_FONT_START) * OLED_FONT_WIDTH), "OLED_FONT_END references outside array"); | ||
419 | |||
420 | // set the reder buffer data | ||
421 | uint8_t cast_data = (uint8_t)data; // font based on unsigned type for index | ||
422 | if (cast_data < OLED_FONT_START || cast_data > OLED_FONT_END) { | ||
423 | memset(oled_cursor, 0x00, OLED_FONT_WIDTH); | ||
424 | } else { | ||
425 | const uint8_t *glyph = &font[(cast_data - OLED_FONT_START) * OLED_FONT_WIDTH]; | ||
426 | memcpy_P(oled_cursor, glyph, OLED_FONT_WIDTH); | ||
427 | } | ||
428 | |||
429 | // Invert if needed | ||
430 | if (invert) { | ||
431 | InvertCharacter(oled_cursor); | ||
432 | } | ||
433 | |||
434 | // Dirty check | ||
435 | if (memcmp(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH)) { | ||
436 | uint16_t index = oled_cursor - &oled_buffer[0]; | ||
437 | oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE)); | ||
438 | // Edgecase check if the written data spans the 2 chunks | ||
439 | oled_dirty |= ((OLED_BLOCK_TYPE)1 << ((index + OLED_FONT_WIDTH - 1) / OLED_BLOCK_SIZE)); | ||
440 | } | ||
441 | |||
442 | // Finally move to the next char | ||
443 | oled_advance_char(); | ||
444 | } | ||
445 | |||
446 | void oled_write(const char *data, bool invert) { | ||
447 | const char *end = data + strlen(data); | ||
448 | while (data < end) { | ||
449 | oled_write_char(*data, invert); | ||
450 | data++; | ||
451 | } | ||
452 | } | ||
453 | |||
454 | void oled_write_ln(const char *data, bool invert) { | ||
455 | oled_write(data, invert); | ||
456 | oled_advance_page(true); | ||
457 | } | ||
458 | |||
459 | void oled_pan(bool left) { | ||
460 | uint16_t i = 0; | ||
461 | for (uint16_t y = 0; y < OLED_DISPLAY_HEIGHT / 8; y++) { | ||
462 | if (left) { | ||
463 | for (uint16_t x = 0; x < OLED_DISPLAY_WIDTH - 1; x++) { | ||
464 | i = y * OLED_DISPLAY_WIDTH + x; | ||
465 | oled_buffer[i] = oled_buffer[i + 1]; | ||
466 | } | ||
467 | } else { | ||
468 | for (uint16_t x = OLED_DISPLAY_WIDTH - 1; x > 0; x--) { | ||
469 | i = y * OLED_DISPLAY_WIDTH + x; | ||
470 | oled_buffer[i] = oled_buffer[i - 1]; | ||
471 | } | ||
472 | } | ||
473 | } | ||
474 | oled_dirty = OLED_ALL_BLOCKS_MASK; | ||
475 | } | ||
476 | |||
477 | oled_buffer_reader_t oled_read_raw(uint16_t start_index) { | ||
478 | if (start_index > OLED_MATRIX_SIZE) start_index = OLED_MATRIX_SIZE; | ||
479 | oled_buffer_reader_t ret_reader; | ||
480 | ret_reader.current_element = &oled_buffer[start_index]; | ||
481 | ret_reader.remaining_element_count = OLED_MATRIX_SIZE - start_index; | ||
482 | return ret_reader; | ||
483 | } | ||
484 | |||
485 | void oled_write_raw_byte(const char data, uint16_t index) { | ||
486 | if (index > OLED_MATRIX_SIZE) index = OLED_MATRIX_SIZE; | ||
487 | if (oled_buffer[index] == data) return; | ||
488 | oled_buffer[index] = data; | ||
489 | oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE)); | ||
490 | } | ||
491 | |||
492 | void oled_write_raw(const char *data, uint16_t size) { | ||
493 | uint16_t cursor_start_index = oled_cursor - &oled_buffer[0]; | ||
494 | if ((size + cursor_start_index) > OLED_MATRIX_SIZE) size = OLED_MATRIX_SIZE - cursor_start_index; | ||
495 | for (uint16_t i = cursor_start_index; i < cursor_start_index + size; i++) { | ||
496 | uint8_t c = *data++; | ||
497 | if (oled_buffer[i] == c) continue; | ||
498 | oled_buffer[i] = c; | ||
499 | oled_dirty |= ((OLED_BLOCK_TYPE)1 << (i / OLED_BLOCK_SIZE)); | ||
500 | } | ||
501 | } | ||
502 | |||
503 | void oled_write_pixel(uint8_t x, uint8_t y, bool on) { | ||
504 | if (x >= oled_rotation_width) { | ||
505 | return; | ||
506 | } | ||
507 | uint16_t index = x + (y / 8) * oled_rotation_width; | ||
508 | if (index >= OLED_MATRIX_SIZE) { | ||
509 | return; | ||
510 | } | ||
511 | uint8_t data = oled_buffer[index]; | ||
512 | if (on) { | ||
513 | data |= (1 << (y % 8)); | ||
514 | } else { | ||
515 | data &= ~(1 << (y % 8)); | ||
516 | } | ||
517 | if (oled_buffer[index] != data) { | ||
518 | oled_buffer[index] = data; | ||
519 | oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE)); | ||
520 | } | ||
521 | } | ||
522 | |||
523 | #if defined(__AVR__) | ||
524 | void oled_write_P(const char *data, bool invert) { | ||
525 | uint8_t c = pgm_read_byte(data); | ||
526 | while (c != 0) { | ||
527 | oled_write_char(c, invert); | ||
528 | c = pgm_read_byte(++data); | ||
529 | } | ||
530 | } | ||
531 | |||
532 | void oled_write_ln_P(const char *data, bool invert) { | ||
533 | oled_write_P(data, invert); | ||
534 | oled_advance_page(true); | ||
535 | } | ||
536 | |||
537 | void oled_write_raw_P(const char *data, uint16_t size) { | ||
538 | uint16_t cursor_start_index = oled_cursor - &oled_buffer[0]; | ||
539 | if ((size + cursor_start_index) > OLED_MATRIX_SIZE) size = OLED_MATRIX_SIZE - cursor_start_index; | ||
540 | for (uint16_t i = cursor_start_index; i < cursor_start_index + size; i++) { | ||
541 | uint8_t c = pgm_read_byte(data++); | ||
542 | if (oled_buffer[i] == c) continue; | ||
543 | oled_buffer[i] = c; | ||
544 | oled_dirty |= ((OLED_BLOCK_TYPE)1 << (i / OLED_BLOCK_SIZE)); | ||
545 | } | ||
546 | } | ||
547 | #endif // defined(__AVR__) | ||
548 | |||
549 | bool oled_on(void) { | ||
550 | if (!oled_initialized) { | ||
551 | return oled_active; | ||
552 | } | ||
553 | |||
554 | #if OLED_TIMEOUT > 0 | ||
555 | oled_timeout = timer_read32() + OLED_TIMEOUT; | ||
556 | #endif | ||
557 | |||
558 | static const uint8_t PROGMEM display_on[] = | ||
559 | #ifdef OLED_FADE_OUT | ||
560 | {I2C_CMD, FADE_BLINK, 0x00}; | ||
561 | #else | ||
562 | {I2C_CMD, DISPLAY_ON}; | ||
563 | #endif | ||
564 | |||
565 | if (!oled_active) { | ||
566 | if (I2C_TRANSMIT_P(display_on) != I2C_STATUS_SUCCESS) { | ||
567 | print("oled_on cmd failed\n"); | ||
568 | return oled_active; | ||
569 | } | ||
570 | oled_active = true; | ||
571 | } | ||
572 | return oled_active; | ||
573 | } | ||
574 | |||
575 | bool oled_off(void) { | ||
576 | if (!oled_initialized) { | ||
577 | return !oled_active; | ||
578 | } | ||
579 | |||
580 | static const uint8_t PROGMEM display_off[] = | ||
581 | #ifdef OLED_FADE_OUT | ||
582 | {I2C_CMD, FADE_BLINK, ENABLE_FADE | OLED_FADE_OUT_INTERVAL}; | ||
583 | #else | ||
584 | {I2C_CMD, DISPLAY_OFF}; | ||
585 | #endif | ||
586 | |||
587 | if (oled_active) { | ||
588 | if (I2C_TRANSMIT_P(display_off) != I2C_STATUS_SUCCESS) { | ||
589 | print("oled_off cmd failed\n"); | ||
590 | return oled_active; | ||
591 | } | ||
592 | oled_active = false; | ||
593 | } | ||
594 | return !oled_active; | ||
595 | } | ||
596 | |||
597 | bool is_oled_on(void) { return oled_active; } | ||
598 | |||
599 | uint8_t oled_set_brightness(uint8_t level) { | ||
600 | if (!oled_initialized) { | ||
601 | return oled_brightness; | ||
602 | } | ||
603 | |||
604 | uint8_t set_contrast[] = {I2C_CMD, CONTRAST, level}; | ||
605 | if (oled_brightness != level) { | ||
606 | if (I2C_TRANSMIT(set_contrast) != I2C_STATUS_SUCCESS) { | ||
607 | print("set_brightness cmd failed\n"); | ||
608 | return oled_brightness; | ||
609 | } | ||
610 | oled_brightness = level; | ||
611 | } | ||
612 | return oled_brightness; | ||
613 | } | ||
614 | |||
615 | uint8_t oled_get_brightness(void) { return oled_brightness; } | ||
616 | |||
617 | // Set the specific 8 lines rows of the screen to scroll. | ||
618 | // 0 is the default for start, and 7 for end, which is the entire | ||
619 | // height of the screen. For 128x32 screens, rows 4-7 are not used. | ||
620 | void oled_scroll_set_area(uint8_t start_line, uint8_t end_line) { | ||
621 | oled_scroll_start = start_line; | ||
622 | oled_scroll_end = end_line; | ||
623 | } | ||
624 | |||
625 | void oled_scroll_set_speed(uint8_t speed) { | ||
626 | // Sets the speed for scrolling... does not take effect | ||
627 | // until scrolling is either started or restarted | ||
628 | // the ssd1306 supports 8 speeds | ||
629 | // FrameRate2 speed = 7 | ||
630 | // FrameRate3 speed = 4 | ||
631 | // FrameRate4 speed = 5 | ||
632 | // FrameRate5 speed = 0 | ||
633 | // FrameRate25 speed = 6 | ||
634 | // FrameRate64 speed = 1 | ||
635 | // FrameRate128 speed = 2 | ||
636 | // FrameRate256 speed = 3 | ||
637 | // for ease of use these are remaped here to be in order | ||
638 | static const uint8_t scroll_remap[8] = {7, 4, 5, 0, 6, 1, 2, 3}; | ||
639 | oled_scroll_speed = scroll_remap[speed]; | ||
640 | } | ||
641 | |||
642 | bool oled_scroll_right(void) { | ||
643 | if (!oled_initialized) { | ||
644 | return oled_scrolling; | ||
645 | } | ||
646 | |||
647 | // Dont enable scrolling if we need to update the display | ||
648 | // This prevents scrolling of bad data from starting the scroll too early after init | ||
649 | if (!oled_dirty && !oled_scrolling) { | ||
650 | uint8_t display_scroll_right[] = {I2C_CMD, SCROLL_RIGHT, 0x00, oled_scroll_start, oled_scroll_speed, oled_scroll_end, 0x00, 0xFF, ACTIVATE_SCROLL}; | ||
651 | if (I2C_TRANSMIT(display_scroll_right) != I2C_STATUS_SUCCESS) { | ||
652 | print("oled_scroll_right cmd failed\n"); | ||
653 | return oled_scrolling; | ||
654 | } | ||
655 | oled_scrolling = true; | ||
656 | } | ||
657 | return oled_scrolling; | ||
658 | } | ||
659 | |||
660 | bool oled_scroll_left(void) { | ||
661 | if (!oled_initialized) { | ||
662 | return oled_scrolling; | ||
663 | } | ||
664 | |||
665 | // Dont enable scrolling if we need to update the display | ||
666 | // This prevents scrolling of bad data from starting the scroll too early after init | ||
667 | if (!oled_dirty && !oled_scrolling) { | ||
668 | uint8_t display_scroll_left[] = {I2C_CMD, SCROLL_LEFT, 0x00, oled_scroll_start, oled_scroll_speed, oled_scroll_end, 0x00, 0xFF, ACTIVATE_SCROLL}; | ||
669 | if (I2C_TRANSMIT(display_scroll_left) != I2C_STATUS_SUCCESS) { | ||
670 | print("oled_scroll_left cmd failed\n"); | ||
671 | return oled_scrolling; | ||
672 | } | ||
673 | oled_scrolling = true; | ||
674 | } | ||
675 | return oled_scrolling; | ||
676 | } | ||
677 | |||
678 | bool oled_scroll_off(void) { | ||
679 | if (!oled_initialized) { | ||
680 | return !oled_scrolling; | ||
681 | } | ||
682 | |||
683 | if (oled_scrolling) { | ||
684 | static const uint8_t PROGMEM display_scroll_off[] = {I2C_CMD, DEACTIVATE_SCROLL}; | ||
685 | if (I2C_TRANSMIT_P(display_scroll_off) != I2C_STATUS_SUCCESS) { | ||
686 | print("oled_scroll_off cmd failed\n"); | ||
687 | return oled_scrolling; | ||
688 | } | ||
689 | oled_scrolling = false; | ||
690 | oled_dirty = OLED_ALL_BLOCKS_MASK; | ||
691 | } | ||
692 | return !oled_scrolling; | ||
693 | } | ||
694 | |||
695 | bool oled_invert(bool invert) { | ||
696 | if (!oled_initialized) { | ||
697 | return oled_inverted; | ||
698 | } | ||
699 | |||
700 | if (invert && !oled_inverted) { | ||
701 | static const uint8_t PROGMEM display_inverted[] = {I2C_CMD, INVERT_DISPLAY}; | ||
702 | if (I2C_TRANSMIT_P(display_inverted) != I2C_STATUS_SUCCESS) { | ||
703 | print("oled_invert cmd failed\n"); | ||
704 | return oled_inverted; | ||
705 | } | ||
706 | oled_inverted = true; | ||
707 | } else if (!invert && oled_inverted) { | ||
708 | static const uint8_t PROGMEM display_normal[] = {I2C_CMD, NORMAL_DISPLAY}; | ||
709 | if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) { | ||
710 | print("oled_invert cmd failed\n"); | ||
711 | return oled_inverted; | ||
712 | } | ||
713 | oled_inverted = false; | ||
714 | } | ||
715 | |||
716 | return oled_inverted; | ||
717 | } | ||
718 | |||
719 | uint8_t oled_max_chars(void) { | ||
720 | if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) { | ||
721 | return OLED_DISPLAY_WIDTH / OLED_FONT_WIDTH; | ||
722 | } | ||
723 | return OLED_DISPLAY_HEIGHT / OLED_FONT_WIDTH; | ||
724 | } | ||
725 | |||
726 | uint8_t oled_max_lines(void) { | ||
727 | if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) { | ||
728 | return OLED_DISPLAY_HEIGHT / OLED_FONT_HEIGHT; | ||
729 | } | ||
730 | return OLED_DISPLAY_WIDTH / OLED_FONT_HEIGHT; | ||
731 | } | ||
732 | |||
733 | void oled_task(void) { | ||
734 | if (!oled_initialized) { | ||
735 | return; | ||
736 | } | ||
737 | |||
738 | #if OLED_UPDATE_INTERVAL > 0 | ||
739 | if (timer_elapsed(oled_update_timeout) >= OLED_UPDATE_INTERVAL) { | ||
740 | oled_update_timeout = timer_read(); | ||
741 | oled_set_cursor(0, 0); | ||
742 | oled_task_user(); | ||
743 | } | ||
744 | #else | ||
745 | oled_set_cursor(0, 0); | ||
746 | oled_task_user(); | ||
747 | #endif | ||
748 | |||
749 | #if OLED_SCROLL_TIMEOUT > 0 | ||
750 | if (oled_dirty && oled_scrolling) { | ||
751 | oled_scroll_timeout = timer_read32() + OLED_SCROLL_TIMEOUT; | ||
752 | oled_scroll_off(); | ||
753 | } | ||
754 | #endif | ||
755 | |||
756 | // Smart render system, no need to check for dirty | ||
757 | oled_render(); | ||
758 | |||
759 | // Display timeout check | ||
760 | #if OLED_TIMEOUT > 0 | ||
761 | if (oled_active && timer_expired32(timer_read32(), oled_timeout)) { | ||
762 | oled_off(); | ||
763 | } | ||
764 | #endif | ||
765 | |||
766 | #if OLED_SCROLL_TIMEOUT > 0 | ||
767 | if (!oled_scrolling && timer_expired32(timer_read32(), oled_scroll_timeout)) { | ||
768 | # ifdef OLED_SCROLL_TIMEOUT_RIGHT | ||
769 | oled_scroll_right(); | ||
770 | # else | ||
771 | oled_scroll_left(); | ||
772 | # endif | ||
773 | } | ||
774 | #endif | ||
775 | } | ||
776 | |||
777 | __attribute__((weak)) void oled_task_user(void) {} | ||