diff options
Diffstat (limited to 'platforms/chibios/drivers/audio_dac_additive.c')
| -rw-r--r-- | platforms/chibios/drivers/audio_dac_additive.c | 335 |
1 files changed, 335 insertions, 0 deletions
diff --git a/platforms/chibios/drivers/audio_dac_additive.c b/platforms/chibios/drivers/audio_dac_additive.c new file mode 100644 index 000000000..db304adb8 --- /dev/null +++ b/platforms/chibios/drivers/audio_dac_additive.c | |||
| @@ -0,0 +1,335 @@ | |||
| 1 | /* Copyright 2016-2019 Jack Humbert | ||
| 2 | * Copyright 2020 JohSchneider | ||
| 3 | * | ||
| 4 | * This program is free software: you can redistribute it and/or modify | ||
| 5 | * it under the terms of the GNU General Public License as published by | ||
| 6 | * the Free Software Foundation, either version 2 of the License, or | ||
| 7 | * (at your option) any later version. | ||
| 8 | * | ||
| 9 | * This program is distributed in the hope that it will be useful, | ||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 12 | * GNU General Public License for more details. | ||
| 13 | * | ||
| 14 | * You should have received a copy of the GNU General Public License | ||
| 15 | * along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
| 16 | */ | ||
| 17 | |||
| 18 | #include "audio.h" | ||
| 19 | #include <ch.h> | ||
| 20 | #include <hal.h> | ||
| 21 | |||
| 22 | /* | ||
| 23 | Audio Driver: DAC | ||
| 24 | |||
| 25 | which utilizes the dac unit many STM32 are equipped with, to output a modulated waveform from samples stored in the dac_buffer_* array who are passed to the hardware through DMA | ||
| 26 | |||
| 27 | it is also possible to have a custom sample-LUT by implementing/overriding 'dac_value_generate' | ||
| 28 | |||
| 29 | this driver allows for multiple simultaneous tones to be played through one single channel by doing additive wave-synthesis | ||
| 30 | */ | ||
| 31 | |||
| 32 | #if !defined(AUDIO_PIN) | ||
| 33 | # error "Audio feature enabled, but no suitable pin selected as AUDIO_PIN - see docs/feature_audio under 'ARM (DAC additive)' for available options." | ||
| 34 | #endif | ||
| 35 | #if defined(AUDIO_PIN_ALT) && !defined(AUDIO_PIN_ALT_AS_NEGATIVE) | ||
| 36 | # pragma message "Audio feature: AUDIO_PIN_ALT set, but not AUDIO_PIN_ALT_AS_NEGATIVE - pin will be left unused; audio might still work though." | ||
| 37 | #endif | ||
| 38 | |||
| 39 | #if !defined(AUDIO_PIN_ALT) | ||
| 40 | // no ALT pin defined is valid, but the c-ifs below need some value set | ||
| 41 | # define AUDIO_PIN_ALT PAL_NOLINE | ||
| 42 | #endif | ||
| 43 | |||
| 44 | #if !defined(AUDIO_DAC_SAMPLE_WAVEFORM_SINE) && !defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE) && !defined(AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE) && !defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID) | ||
| 45 | # define AUDIO_DAC_SAMPLE_WAVEFORM_SINE | ||
| 46 | #endif | ||
| 47 | |||
| 48 | #ifdef AUDIO_DAC_SAMPLE_WAVEFORM_SINE | ||
| 49 | /* one full sine wave over [0,2*pi], but shifted up one amplitude and left pi/4; for the samples to start at 0 | ||
| 50 | */ | ||
| 51 | static const dacsample_t dac_buffer_sine[AUDIO_DAC_BUFFER_SIZE] = { | ||
| 52 | // 256 values, max 4095 | ||
| 53 | 0x0, 0x1, 0x2, 0x6, 0xa, 0xf, 0x16, 0x1e, 0x27, 0x32, 0x3d, 0x4a, 0x58, 0x67, 0x78, 0x89, 0x9c, 0xb0, 0xc5, 0xdb, 0xf2, 0x10a, 0x123, 0x13e, 0x159, 0x175, 0x193, 0x1b1, 0x1d1, 0x1f1, 0x212, 0x235, 0x258, 0x27c, 0x2a0, 0x2c6, 0x2ed, 0x314, 0x33c, 0x365, 0x38e, 0x3b8, 0x3e3, 0x40e, 0x43a, 0x467, 0x494, 0x4c2, 0x4f0, 0x51f, 0x54e, 0x57d, 0x5ad, 0x5dd, 0x60e, 0x63f, 0x670, 0x6a1, 0x6d3, 0x705, 0x737, 0x769, 0x79b, 0x7cd, 0x800, 0x832, 0x864, 0x896, 0x8c8, 0x8fa, 0x92c, 0x95e, 0x98f, 0x9c0, 0x9f1, 0xa22, 0xa52, 0xa82, 0xab1, 0xae0, 0xb0f, 0xb3d, 0xb6b, 0xb98, 0xbc5, 0xbf1, 0xc1c, 0xc47, 0xc71, 0xc9a, 0xcc3, 0xceb, 0xd12, 0xd39, 0xd5f, 0xd83, 0xda7, 0xdca, 0xded, 0xe0e, 0xe2e, 0xe4e, 0xe6c, 0xe8a, 0xea6, 0xec1, 0xedc, 0xef5, 0xf0d, 0xf24, 0xf3a, 0xf4f, 0xf63, 0xf76, 0xf87, 0xf98, 0xfa7, 0xfb5, 0xfc2, 0xfcd, 0xfd8, 0xfe1, 0xfe9, 0xff0, 0xff5, 0xff9, 0xffd, 0xffe, | ||
| 54 | 0xfff, 0xffe, 0xffd, 0xff9, 0xff5, 0xff0, 0xfe9, 0xfe1, 0xfd8, 0xfcd, 0xfc2, 0xfb5, 0xfa7, 0xf98, 0xf87, 0xf76, 0xf63, 0xf4f, 0xf3a, 0xf24, 0xf0d, 0xef5, 0xedc, 0xec1, 0xea6, 0xe8a, 0xe6c, 0xe4e, 0xe2e, 0xe0e, 0xded, 0xdca, 0xda7, 0xd83, 0xd5f, 0xd39, 0xd12, 0xceb, 0xcc3, 0xc9a, 0xc71, 0xc47, 0xc1c, 0xbf1, 0xbc5, 0xb98, 0xb6b, 0xb3d, 0xb0f, 0xae0, 0xab1, 0xa82, 0xa52, 0xa22, 0x9f1, 0x9c0, 0x98f, 0x95e, 0x92c, 0x8fa, 0x8c8, 0x896, 0x864, 0x832, 0x800, 0x7cd, 0x79b, 0x769, 0x737, 0x705, 0x6d3, 0x6a1, 0x670, 0x63f, 0x60e, 0x5dd, 0x5ad, 0x57d, 0x54e, 0x51f, 0x4f0, 0x4c2, 0x494, 0x467, 0x43a, 0x40e, 0x3e3, 0x3b8, 0x38e, 0x365, 0x33c, 0x314, 0x2ed, 0x2c6, 0x2a0, 0x27c, 0x258, 0x235, 0x212, 0x1f1, 0x1d1, 0x1b1, 0x193, 0x175, 0x159, 0x13e, 0x123, 0x10a, 0xf2, 0xdb, 0xc5, 0xb0, 0x9c, 0x89, 0x78, 0x67, 0x58, 0x4a, 0x3d, 0x32, 0x27, 0x1e, 0x16, 0xf, 0xa, 0x6, 0x2, 0x1}; | ||
| 55 | #endif // AUDIO_DAC_SAMPLE_WAVEFORM_SINE | ||
| 56 | #ifdef AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE | ||
| 57 | static const dacsample_t dac_buffer_triangle[AUDIO_DAC_BUFFER_SIZE] = { | ||
| 58 | // 256 values, max 4095 | ||
| 59 | 0x0, 0x20, 0x40, 0x60, 0x80, 0xa0, 0xc0, 0xe0, 0x100, 0x120, 0x140, 0x160, 0x180, 0x1a0, 0x1c0, 0x1e0, 0x200, 0x220, 0x240, 0x260, 0x280, 0x2a0, 0x2c0, 0x2e0, 0x300, 0x320, 0x340, 0x360, 0x380, 0x3a0, 0x3c0, 0x3e0, 0x400, 0x420, 0x440, 0x460, 0x480, 0x4a0, 0x4c0, 0x4e0, 0x500, 0x520, 0x540, 0x560, 0x580, 0x5a0, 0x5c0, 0x5e0, 0x600, 0x620, 0x640, 0x660, 0x680, 0x6a0, 0x6c0, 0x6e0, 0x700, 0x720, 0x740, 0x760, 0x780, 0x7a0, 0x7c0, 0x7e0, 0x800, 0x81f, 0x83f, 0x85f, 0x87f, 0x89f, 0x8bf, 0x8df, 0x8ff, 0x91f, 0x93f, 0x95f, 0x97f, 0x99f, 0x9bf, 0x9df, 0x9ff, 0xa1f, 0xa3f, 0xa5f, 0xa7f, 0xa9f, 0xabf, 0xadf, 0xaff, 0xb1f, 0xb3f, 0xb5f, 0xb7f, 0xb9f, 0xbbf, 0xbdf, 0xbff, 0xc1f, 0xc3f, 0xc5f, 0xc7f, 0xc9f, 0xcbf, 0xcdf, 0xcff, 0xd1f, 0xd3f, 0xd5f, 0xd7f, 0xd9f, 0xdbf, 0xddf, 0xdff, 0xe1f, 0xe3f, 0xe5f, 0xe7f, 0xe9f, 0xebf, 0xedf, 0xeff, 0xf1f, 0xf3f, 0xf5f, 0xf7f, 0xf9f, 0xfbf, 0xfdf, | ||
| 60 | 0xfff, 0xfdf, 0xfbf, 0xf9f, 0xf7f, 0xf5f, 0xf3f, 0xf1f, 0xeff, 0xedf, 0xebf, 0xe9f, 0xe7f, 0xe5f, 0xe3f, 0xe1f, 0xdff, 0xddf, 0xdbf, 0xd9f, 0xd7f, 0xd5f, 0xd3f, 0xd1f, 0xcff, 0xcdf, 0xcbf, 0xc9f, 0xc7f, 0xc5f, 0xc3f, 0xc1f, 0xbff, 0xbdf, 0xbbf, 0xb9f, 0xb7f, 0xb5f, 0xb3f, 0xb1f, 0xaff, 0xadf, 0xabf, 0xa9f, 0xa7f, 0xa5f, 0xa3f, 0xa1f, 0x9ff, 0x9df, 0x9bf, 0x99f, 0x97f, 0x95f, 0x93f, 0x91f, 0x8ff, 0x8df, 0x8bf, 0x89f, 0x87f, 0x85f, 0x83f, 0x81f, 0x800, 0x7e0, 0x7c0, 0x7a0, 0x780, 0x760, 0x740, 0x720, 0x700, 0x6e0, 0x6c0, 0x6a0, 0x680, 0x660, 0x640, 0x620, 0x600, 0x5e0, 0x5c0, 0x5a0, 0x580, 0x560, 0x540, 0x520, 0x500, 0x4e0, 0x4c0, 0x4a0, 0x480, 0x460, 0x440, 0x420, 0x400, 0x3e0, 0x3c0, 0x3a0, 0x380, 0x360, 0x340, 0x320, 0x300, 0x2e0, 0x2c0, 0x2a0, 0x280, 0x260, 0x240, 0x220, 0x200, 0x1e0, 0x1c0, 0x1a0, 0x180, 0x160, 0x140, 0x120, 0x100, 0xe0, 0xc0, 0xa0, 0x80, 0x60, 0x40, 0x20}; | ||
| 61 | #endif // AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE | ||
| 62 | #ifdef AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE | ||
| 63 | static const dacsample_t dac_buffer_square[AUDIO_DAC_BUFFER_SIZE] = { | ||
| 64 | [0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1] = 0, // first and | ||
| 65 | [AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = AUDIO_DAC_SAMPLE_MAX, // second half | ||
| 66 | }; | ||
| 67 | #endif // AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE | ||
| 68 | /* | ||
| 69 | // four steps: 0, 1/3, 2/3 and 1 | ||
| 70 | static const dacsample_t dac_buffer_staircase[AUDIO_DAC_BUFFER_SIZE] = { | ||
| 71 | [0 ... AUDIO_DAC_BUFFER_SIZE/3 -1 ] = 0, | ||
| 72 | [AUDIO_DAC_BUFFER_SIZE / 4 ... AUDIO_DAC_BUFFER_SIZE / 2 -1 ] = AUDIO_DAC_SAMPLE_MAX / 3, | ||
| 73 | [AUDIO_DAC_BUFFER_SIZE / 2 ... 3 * AUDIO_DAC_BUFFER_SIZE / 4 -1 ] = 2 * AUDIO_DAC_SAMPLE_MAX / 3, | ||
| 74 | [3 * AUDIO_DAC_BUFFER_SIZE / 4 ... AUDIO_DAC_BUFFER_SIZE -1 ] = AUDIO_DAC_SAMPLE_MAX, | ||
| 75 | } | ||
| 76 | */ | ||
| 77 | #ifdef AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID | ||
| 78 | static const dacsample_t dac_buffer_trapezoid[AUDIO_DAC_BUFFER_SIZE] = {0x0, 0x1f, 0x7f, 0xdf, 0x13f, 0x19f, 0x1ff, 0x25f, 0x2bf, 0x31f, 0x37f, 0x3df, 0x43f, 0x49f, 0x4ff, 0x55f, 0x5bf, 0x61f, 0x67f, 0x6df, 0x73f, 0x79f, 0x7ff, 0x85f, 0x8bf, 0x91f, 0x97f, 0x9df, 0xa3f, 0xa9f, 0xaff, 0xb5f, 0xbbf, 0xc1f, 0xc7f, 0xcdf, 0xd3f, 0xd9f, 0xdff, 0xe5f, 0xebf, 0xf1f, 0xf7f, 0xfdf, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, | ||
| 79 | 0xfff, 0xfdf, 0xf7f, 0xf1f, 0xebf, 0xe5f, 0xdff, 0xd9f, 0xd3f, 0xcdf, 0xc7f, 0xc1f, 0xbbf, 0xb5f, 0xaff, 0xa9f, 0xa3f, 0x9df, 0x97f, 0x91f, 0x8bf, 0x85f, 0x7ff, 0x79f, 0x73f, 0x6df, 0x67f, 0x61f, 0x5bf, 0x55f, 0x4ff, 0x49f, 0x43f, 0x3df, 0x37f, 0x31f, 0x2bf, 0x25f, 0x1ff, 0x19f, 0x13f, 0xdf, 0x7f, 0x1f, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}; | ||
| 80 | #endif // AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID | ||
| 81 | |||
| 82 | static dacsample_t dac_buffer_empty[AUDIO_DAC_BUFFER_SIZE] = {AUDIO_DAC_OFF_VALUE}; | ||
| 83 | |||
| 84 | /* keep track of the sample position for for each frequency */ | ||
| 85 | static float dac_if[AUDIO_MAX_SIMULTANEOUS_TONES] = {0.0}; | ||
| 86 | |||
| 87 | static float active_tones_snapshot[AUDIO_MAX_SIMULTANEOUS_TONES] = {0, 0}; | ||
| 88 | static uint8_t active_tones_snapshot_length = 0; | ||
| 89 | |||
| 90 | typedef enum { | ||
| 91 | OUTPUT_SHOULD_START, | ||
| 92 | OUTPUT_RUN_NORMALLY, | ||
| 93 | // path 1: wait for zero, then change/update active tones | ||
| 94 | OUTPUT_TONES_CHANGED, | ||
| 95 | OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE, | ||
| 96 | // path 2: hardware should stop, wait for zero then turn output off = stop the timer | ||
| 97 | OUTPUT_SHOULD_STOP, | ||
| 98 | OUTPUT_REACHED_ZERO_BEFORE_OFF, | ||
| 99 | OUTPUT_OFF, | ||
| 100 | OUTPUT_OFF_1, | ||
| 101 | OUTPUT_OFF_2, // trailing off: giving the DAC two more conversion cycles until the AUDIO_DAC_OFF_VALUE reaches the output, then turn the timer off, which leaves the output at that level | ||
| 102 | number_of_output_states | ||
| 103 | } output_states_t; | ||
| 104 | output_states_t state = OUTPUT_OFF_2; | ||
| 105 | |||
| 106 | /** | ||
| 107 | * Generation of the waveform being passed to the callback. Declared weak so users | ||
| 108 | * can override it with their own wave-forms/noises. | ||
| 109 | */ | ||
| 110 | __attribute__((weak)) uint16_t dac_value_generate(void) { | ||
| 111 | // DAC is running/asking for values but snapshot length is zero -> must be playing a pause | ||
| 112 | if (active_tones_snapshot_length == 0) { | ||
| 113 | return AUDIO_DAC_OFF_VALUE; | ||
| 114 | } | ||
| 115 | |||
| 116 | /* doing additive wave synthesis over all currently playing tones = adding up | ||
| 117 | * sine-wave-samples for each frequency, scaled by the number of active tones | ||
| 118 | */ | ||
| 119 | uint16_t value = 0; | ||
| 120 | float frequency = 0.0f; | ||
| 121 | |||
| 122 | for (uint8_t i = 0; i < active_tones_snapshot_length; i++) { | ||
| 123 | /* Note: a user implementation does not have to rely on the active_tones_snapshot, but | ||
| 124 | * could directly query the active frequencies through audio_get_processed_frequency */ | ||
| 125 | frequency = active_tones_snapshot[i]; | ||
| 126 | |||
| 127 | dac_if[i] = dac_if[i] + ((frequency * AUDIO_DAC_BUFFER_SIZE) / AUDIO_DAC_SAMPLE_RATE) * 2 / 3; | ||
| 128 | /*Note: the 2/3 are necessary to get the correct frequencies on the | ||
| 129 | * DAC output (as measured with an oscilloscope), since the gpt | ||
| 130 | * timer runs with 3*AUDIO_DAC_SAMPLE_RATE; and the DAC callback | ||
| 131 | * is called twice per conversion.*/ | ||
| 132 | |||
| 133 | dac_if[i] = fmod(dac_if[i], AUDIO_DAC_BUFFER_SIZE); | ||
| 134 | |||
| 135 | // Wavetable generation/lookup | ||
| 136 | uint16_t dac_i = (uint16_t)dac_if[i]; | ||
| 137 | |||
| 138 | #if defined(AUDIO_DAC_SAMPLE_WAVEFORM_SINE) | ||
| 139 | value += dac_buffer_sine[dac_i] / active_tones_snapshot_length; | ||
| 140 | #elif defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE) | ||
| 141 | value += dac_buffer_triangle[dac_i] / active_tones_snapshot_length; | ||
| 142 | #elif defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID) | ||
| 143 | value += dac_buffer_trapezoid[dac_i] / active_tones_snapshot_length; | ||
| 144 | #elif defined(AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE) | ||
| 145 | value += dac_buffer_square[dac_i] / active_tones_snapshot_length; | ||
| 146 | #endif | ||
| 147 | /* | ||
| 148 | // SINE | ||
| 149 | value += dac_buffer_sine[dac_i] / active_tones_snapshot_length / 3; | ||
| 150 | // TRIANGLE | ||
| 151 | value += dac_buffer_triangle[dac_i] / active_tones_snapshot_length / 3; | ||
| 152 | // SQUARE | ||
| 153 | value += dac_buffer_square[dac_i] / active_tones_snapshot_length / 3; | ||
| 154 | //NOTE: combination of these three wave-forms is more exemplary - and doesn't sound particularly good :-P | ||
| 155 | */ | ||
| 156 | |||
| 157 | // STAIRS (mostly usefully as test-pattern) | ||
| 158 | // value_avg = dac_buffer_staircase[dac_i] / active_tones_snapshot_length; | ||
| 159 | } | ||
| 160 | |||
| 161 | return value; | ||
| 162 | } | ||
| 163 | |||
| 164 | /** | ||
| 165 | * DAC streaming callback. Does all of the main computing for playing songs. | ||
| 166 | * | ||
| 167 | * Note: chibios calls this CB twice: during the 'half buffer event', and the 'full buffer event'. | ||
| 168 | */ | ||
| 169 | static void dac_end(DACDriver *dacp) { | ||
| 170 | dacsample_t *sample_p = (dacp)->samples; | ||
| 171 | |||
| 172 | // work on the other half of the buffer | ||
| 173 | if (dacIsBufferComplete(dacp)) { | ||
| 174 | sample_p += AUDIO_DAC_BUFFER_SIZE / 2; // 'half_index' | ||
| 175 | } | ||
| 176 | |||
| 177 | for (uint8_t s = 0; s < AUDIO_DAC_BUFFER_SIZE / 2; s++) { | ||
| 178 | if (OUTPUT_OFF <= state) { | ||
| 179 | sample_p[s] = AUDIO_DAC_OFF_VALUE; | ||
| 180 | continue; | ||
| 181 | } else { | ||
| 182 | sample_p[s] = dac_value_generate(); | ||
| 183 | } | ||
| 184 | |||
| 185 | /* zero crossing (or approach, whereas zero == DAC_OFF_VALUE, which can be configured to anything from 0 to DAC_SAMPLE_MAX) | ||
| 186 | * ============================*=*========================== AUDIO_DAC_SAMPLE_MAX | ||
| 187 | * * * | ||
| 188 | * * * | ||
| 189 | * --------------------------------------------------------- | ||
| 190 | * * * } AUDIO_DAC_SAMPLE_MAX/100 | ||
| 191 | * --------------------------------------------------------- AUDIO_DAC_OFF_VALUE | ||
| 192 | * * * } AUDIO_DAC_SAMPLE_MAX/100 | ||
| 193 | * --------------------------------------------------------- | ||
| 194 | * * | ||
| 195 | * * * | ||
| 196 | * * * | ||
| 197 | * =====*=*================================================= 0x0 | ||
| 198 | */ | ||
| 199 | if (((sample_p[s] + (AUDIO_DAC_SAMPLE_MAX / 100)) > AUDIO_DAC_OFF_VALUE) && // value approaches from below | ||
| 200 | (sample_p[s] < (AUDIO_DAC_OFF_VALUE + (AUDIO_DAC_SAMPLE_MAX / 100))) // or above | ||
| 201 | ) { | ||
| 202 | if ((OUTPUT_SHOULD_START == state) && (active_tones_snapshot_length > 0)) { | ||
| 203 | state = OUTPUT_RUN_NORMALLY; | ||
| 204 | } else if (OUTPUT_TONES_CHANGED == state) { | ||
| 205 | state = OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE; | ||
| 206 | } else if (OUTPUT_SHOULD_STOP == state) { | ||
| 207 | state = OUTPUT_REACHED_ZERO_BEFORE_OFF; | ||
| 208 | } | ||
| 209 | } | ||
| 210 | |||
| 211 | // still 'ramping up', reset the output to OFF_VALUE until the generated values reach that value, to do a smooth handover | ||
| 212 | if (OUTPUT_SHOULD_START == state) { | ||
| 213 | sample_p[s] = AUDIO_DAC_OFF_VALUE; | ||
| 214 | } | ||
| 215 | |||
| 216 | if ((OUTPUT_SHOULD_START == state) || (OUTPUT_REACHED_ZERO_BEFORE_OFF == state) || (OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE == state)) { | ||
| 217 | uint8_t active_tones = MIN(AUDIO_MAX_SIMULTANEOUS_TONES, audio_get_number_of_active_tones()); | ||
| 218 | active_tones_snapshot_length = 0; | ||
| 219 | // update the snapshot - once, and only on occasion that something changed; | ||
| 220 | // -> saves cpu cycles (?) | ||
| 221 | for (uint8_t i = 0; i < active_tones; i++) { | ||
| 222 | float freq = audio_get_processed_frequency(i); | ||
| 223 | if (freq > 0) { // disregard 'rest' notes, with valid frequency 0.0f; which would only lower the resulting waveform volume during the additive synthesis step | ||
| 224 | active_tones_snapshot[active_tones_snapshot_length++] = freq; | ||
| 225 | } | ||
| 226 | } | ||
| 227 | |||
| 228 | if ((0 == active_tones_snapshot_length) && (OUTPUT_REACHED_ZERO_BEFORE_OFF == state)) { | ||
| 229 | state = OUTPUT_OFF; | ||
| 230 | } | ||
| 231 | if (OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE == state) { | ||
| 232 | state = OUTPUT_RUN_NORMALLY; | ||
| 233 | } | ||
| 234 | } | ||
| 235 | } | ||
| 236 | |||
| 237 | // update audio internal state (note position, current_note, ...) | ||
| 238 | if (audio_update_state()) { | ||
| 239 | if (OUTPUT_SHOULD_STOP != state) { | ||
| 240 | state = OUTPUT_TONES_CHANGED; | ||
| 241 | } | ||
| 242 | } | ||
| 243 | |||
| 244 | if (OUTPUT_OFF <= state) { | ||
| 245 | if (OUTPUT_OFF_2 == state) { | ||
| 246 | // stopping timer6 = stopping the DAC at whatever value it is currently pushing to the output = AUDIO_DAC_OFF_VALUE | ||
| 247 | gptStopTimer(&GPTD6); | ||
| 248 | } else { | ||
| 249 | state++; | ||
| 250 | } | ||
| 251 | } | ||
| 252 | } | ||
| 253 | |||
| 254 | static void dac_error(DACDriver *dacp, dacerror_t err) { | ||
| 255 | (void)dacp; | ||
| 256 | (void)err; | ||
| 257 | |||
| 258 | chSysHalt("DAC failure. halp"); | ||
| 259 | } | ||
| 260 | |||
| 261 | static const GPTConfig gpt6cfg1 = {.frequency = AUDIO_DAC_SAMPLE_RATE * 3, | ||
| 262 | .callback = NULL, | ||
| 263 | .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */ | ||
| 264 | .dier = 0U}; | ||
| 265 | |||
| 266 | static const DACConfig dac_conf = {.init = AUDIO_DAC_OFF_VALUE, .datamode = DAC_DHRM_12BIT_RIGHT}; | ||
| 267 | |||
| 268 | /** | ||
| 269 | * @note The DAC_TRG(0) here selects the Timer 6 TRGO event, which is triggered | ||
| 270 | * on the rising edge after 3 APB1 clock cycles, causing our gpt6cfg1.frequency | ||
| 271 | * to be a third of what we expect. | ||
| 272 | * | ||
| 273 | * Here are all the values for DAC_TRG (TSEL in the ref manual) | ||
| 274 | * TIM15_TRGO 0b011 | ||
| 275 | * TIM2_TRGO 0b100 | ||
| 276 | * TIM3_TRGO 0b001 | ||
| 277 | * TIM6_TRGO 0b000 | ||
| 278 | * TIM7_TRGO 0b010 | ||
| 279 | * EXTI9 0b110 | ||
| 280 | * SWTRIG 0b111 | ||
| 281 | */ | ||
| 282 | static const DACConversionGroup dac_conv_cfg = {.num_channels = 1U, .end_cb = dac_end, .error_cb = dac_error, .trigger = DAC_TRG(0b000)}; | ||
| 283 | |||
| 284 | void audio_driver_initialize() { | ||
| 285 | if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) { | ||
| 286 | palSetLineMode(A4, PAL_MODE_INPUT_ANALOG); | ||
| 287 | dacStart(&DACD1, &dac_conf); | ||
| 288 | } | ||
| 289 | if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) { | ||
| 290 | palSetLineMode(A5, PAL_MODE_INPUT_ANALOG); | ||
| 291 | dacStart(&DACD2, &dac_conf); | ||
| 292 | } | ||
| 293 | |||
| 294 | /* enable the output buffer, to directly drive external loads with no additional circuitry | ||
| 295 | * | ||
| 296 | * see: AN4566 Application note: Extending the DAC performance of STM32 microcontrollers | ||
| 297 | * Note: Buffer-Off bit -> has to be set 0 to enable the output buffer | ||
| 298 | * Note: enabling the output buffer imparts an additional dc-offset of a couple mV | ||
| 299 | * | ||
| 300 | * this is done here, reaching directly into the stm32 registers since chibios has not implemented BOFF handling yet | ||
| 301 | * (see: chibios/os/hal/ports/STM32/todo.txt '- BOFF handling in DACv1.' | ||
| 302 | */ | ||
| 303 | DACD1.params->dac->CR &= ~DAC_CR_BOFF1; | ||
| 304 | DACD2.params->dac->CR &= ~DAC_CR_BOFF2; | ||
| 305 | |||
| 306 | if (AUDIO_PIN == A4) { | ||
| 307 | dacStartConversion(&DACD1, &dac_conv_cfg, dac_buffer_empty, AUDIO_DAC_BUFFER_SIZE); | ||
| 308 | } else if (AUDIO_PIN == A5) { | ||
| 309 | dacStartConversion(&DACD2, &dac_conv_cfg, dac_buffer_empty, AUDIO_DAC_BUFFER_SIZE); | ||
| 310 | } | ||
| 311 | |||
| 312 | // no inverted/out-of-phase waveform (yet?), only pulling AUDIO_PIN_ALT to AUDIO_DAC_OFF_VALUE | ||
| 313 | #if defined(AUDIO_PIN_ALT_AS_NEGATIVE) | ||
| 314 | if (AUDIO_PIN_ALT == A4) { | ||
| 315 | dacPutChannelX(&DACD1, 0, AUDIO_DAC_OFF_VALUE); | ||
| 316 | } else if (AUDIO_PIN_ALT == A5) { | ||
| 317 | dacPutChannelX(&DACD2, 0, AUDIO_DAC_OFF_VALUE); | ||
| 318 | } | ||
| 319 | #endif | ||
| 320 | |||
| 321 | gptStart(&GPTD6, &gpt6cfg1); | ||
| 322 | } | ||
| 323 | |||
| 324 | void audio_driver_stop(void) { state = OUTPUT_SHOULD_STOP; } | ||
| 325 | |||
| 326 | void audio_driver_start(void) { | ||
| 327 | gptStartContinuous(&GPTD6, 2U); | ||
| 328 | |||
| 329 | for (uint8_t i = 0; i < AUDIO_MAX_SIMULTANEOUS_TONES; i++) { | ||
| 330 | dac_if[i] = 0.0f; | ||
| 331 | active_tones_snapshot[i] = 0.0f; | ||
| 332 | } | ||
| 333 | active_tones_snapshot_length = 0; | ||
| 334 | state = OUTPUT_SHOULD_START; | ||
| 335 | } | ||
