diff options
Diffstat (limited to 'platforms/chibios/drivers/audio_dac_basic.c')
| -rw-r--r-- | platforms/chibios/drivers/audio_dac_basic.c | 245 |
1 files changed, 245 insertions, 0 deletions
diff --git a/platforms/chibios/drivers/audio_dac_basic.c b/platforms/chibios/drivers/audio_dac_basic.c new file mode 100644 index 000000000..fac651350 --- /dev/null +++ b/platforms/chibios/drivers/audio_dac_basic.c | |||
| @@ -0,0 +1,245 @@ | |||
| 1 | /* Copyright 2016-2020 Jack Humbert | ||
| 2 | * Copyright 2020 JohSchneider | ||
| 3 | * | ||
| 4 | * This program is free software: you can redistribute it and/or modify | ||
| 5 | * it under the terms of the GNU General Public License as published by | ||
| 6 | * the Free Software Foundation, either version 2 of the License, or | ||
| 7 | * (at your option) any later version. | ||
| 8 | * | ||
| 9 | * This program is distributed in the hope that it will be useful, | ||
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 12 | * GNU General Public License for more details. | ||
| 13 | * | ||
| 14 | * You should have received a copy of the GNU General Public License | ||
| 15 | * along with this program. If not, see <http://www.gnu.org/licenses/>. | ||
| 16 | */ | ||
| 17 | |||
| 18 | #include "audio.h" | ||
| 19 | #include "ch.h" | ||
| 20 | #include "hal.h" | ||
| 21 | |||
| 22 | /* | ||
| 23 | Audio Driver: DAC | ||
| 24 | |||
| 25 | which utilizes both channels of the DAC unit many STM32 are equipped with to output a modulated square-wave, from precomputed samples stored in a buffer, which is passed to the hardware through DMA | ||
| 26 | |||
| 27 | this driver can either be used to drive to separate speakers, wired to A4+Gnd and A5+Gnd, which allows two tones to be played simultaneously | ||
| 28 | OR | ||
| 29 | one speaker wired to A4+A5 with the AUDIO_PIN_ALT_AS_NEGATIVE define set - see docs/feature_audio | ||
| 30 | |||
| 31 | */ | ||
| 32 | |||
| 33 | #if !defined(AUDIO_PIN) | ||
| 34 | # pragma message "Audio feature enabled, but no suitable pin selected as AUDIO_PIN - see docs/feature_audio under 'ARM (DAC basic)' for available options." | ||
| 35 | // TODO: make this an 'error' instead; go through a breaking change, and add AUDIO_PIN A5 to all keyboards currently using AUDIO on STM32 based boards? - for now: set the define here | ||
| 36 | # define AUDIO_PIN A5 | ||
| 37 | #endif | ||
| 38 | // check configuration for ONE speaker, connected to both DAC pins | ||
| 39 | #if defined(AUDIO_PIN_ALT_AS_NEGATIVE) && !defined(AUDIO_PIN_ALT) | ||
| 40 | # error "Audio feature: AUDIO_PIN_ALT_AS_NEGATIVE set, but no pin configured as AUDIO_PIN_ALT" | ||
| 41 | #endif | ||
| 42 | |||
| 43 | #ifndef AUDIO_PIN_ALT | ||
| 44 | // no ALT pin defined is valid, but the c-ifs below need some value set | ||
| 45 | # define AUDIO_PIN_ALT -1 | ||
| 46 | #endif | ||
| 47 | |||
| 48 | #if !defined(AUDIO_STATE_TIMER) | ||
| 49 | # define AUDIO_STATE_TIMER GPTD8 | ||
| 50 | #endif | ||
| 51 | |||
| 52 | // square-wave | ||
| 53 | static const dacsample_t dac_buffer_1[AUDIO_DAC_BUFFER_SIZE] = { | ||
| 54 | // First half is max, second half is 0 | ||
| 55 | [0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1] = AUDIO_DAC_SAMPLE_MAX, | ||
| 56 | [AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = 0, | ||
| 57 | }; | ||
| 58 | |||
| 59 | // square-wave | ||
| 60 | static const dacsample_t dac_buffer_2[AUDIO_DAC_BUFFER_SIZE] = { | ||
| 61 | // opposite of dac_buffer above | ||
| 62 | [0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1] = 0, | ||
| 63 | [AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = AUDIO_DAC_SAMPLE_MAX, | ||
| 64 | }; | ||
| 65 | |||
| 66 | GPTConfig gpt6cfg1 = {.frequency = AUDIO_DAC_SAMPLE_RATE, | ||
| 67 | .callback = NULL, | ||
| 68 | .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */ | ||
| 69 | .dier = 0U}; | ||
| 70 | GPTConfig gpt7cfg1 = {.frequency = AUDIO_DAC_SAMPLE_RATE, | ||
| 71 | .callback = NULL, | ||
| 72 | .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */ | ||
| 73 | .dier = 0U}; | ||
| 74 | |||
| 75 | static void gpt_audio_state_cb(GPTDriver *gptp); | ||
| 76 | GPTConfig gptStateUpdateCfg = {.frequency = 10, | ||
| 77 | .callback = gpt_audio_state_cb, | ||
| 78 | .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */ | ||
| 79 | .dier = 0U}; | ||
| 80 | |||
| 81 | static const DACConfig dac_conf_ch1 = {.init = AUDIO_DAC_OFF_VALUE, .datamode = DAC_DHRM_12BIT_RIGHT}; | ||
| 82 | static const DACConfig dac_conf_ch2 = {.init = AUDIO_DAC_OFF_VALUE, .datamode = DAC_DHRM_12BIT_RIGHT}; | ||
| 83 | |||
| 84 | /** | ||
| 85 | * @note The DAC_TRG(0) here selects the Timer 6 TRGO event, which is triggered | ||
| 86 | * on the rising edge after 3 APB1 clock cycles, causing our gpt6cfg1.frequency | ||
| 87 | * to be a third of what we expect. | ||
| 88 | * | ||
| 89 | * Here are all the values for DAC_TRG (TSEL in the ref manual) | ||
| 90 | * TIM15_TRGO 0b011 | ||
| 91 | * TIM2_TRGO 0b100 | ||
| 92 | * TIM3_TRGO 0b001 | ||
| 93 | * TIM6_TRGO 0b000 | ||
| 94 | * TIM7_TRGO 0b010 | ||
| 95 | * EXTI9 0b110 | ||
| 96 | * SWTRIG 0b111 | ||
| 97 | */ | ||
| 98 | static const DACConversionGroup dac_conv_grp_ch1 = {.num_channels = 1U, .trigger = DAC_TRG(0b000)}; | ||
| 99 | static const DACConversionGroup dac_conv_grp_ch2 = {.num_channels = 1U, .trigger = DAC_TRG(0b010)}; | ||
| 100 | |||
| 101 | void channel_1_start(void) { | ||
| 102 | gptStart(&GPTD6, &gpt6cfg1); | ||
| 103 | gptStartContinuous(&GPTD6, 2U); | ||
| 104 | palSetPadMode(GPIOA, 4, PAL_MODE_INPUT_ANALOG); | ||
| 105 | } | ||
| 106 | |||
| 107 | void channel_1_stop(void) { | ||
| 108 | gptStopTimer(&GPTD6); | ||
| 109 | palSetPadMode(GPIOA, 4, PAL_MODE_OUTPUT_PUSHPULL); | ||
| 110 | palSetPad(GPIOA, 4); | ||
| 111 | } | ||
| 112 | |||
| 113 | static float channel_1_frequency = 0.0f; | ||
| 114 | void channel_1_set_frequency(float freq) { | ||
| 115 | channel_1_frequency = freq; | ||
| 116 | |||
| 117 | channel_1_stop(); | ||
| 118 | if (freq <= 0.0) // a pause/rest has freq=0 | ||
| 119 | return; | ||
| 120 | |||
| 121 | gpt6cfg1.frequency = 2 * freq * AUDIO_DAC_BUFFER_SIZE; | ||
| 122 | channel_1_start(); | ||
| 123 | } | ||
| 124 | float channel_1_get_frequency(void) { return channel_1_frequency; } | ||
| 125 | |||
| 126 | void channel_2_start(void) { | ||
| 127 | gptStart(&GPTD7, &gpt7cfg1); | ||
| 128 | gptStartContinuous(&GPTD7, 2U); | ||
| 129 | palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG); | ||
| 130 | } | ||
| 131 | |||
| 132 | void channel_2_stop(void) { | ||
| 133 | gptStopTimer(&GPTD7); | ||
| 134 | palSetPadMode(GPIOA, 5, PAL_MODE_OUTPUT_PUSHPULL); | ||
| 135 | palSetPad(GPIOA, 5); | ||
| 136 | } | ||
| 137 | |||
| 138 | static float channel_2_frequency = 0.0f; | ||
| 139 | void channel_2_set_frequency(float freq) { | ||
| 140 | channel_2_frequency = freq; | ||
| 141 | |||
| 142 | channel_2_stop(); | ||
| 143 | if (freq <= 0.0) // a pause/rest has freq=0 | ||
| 144 | return; | ||
| 145 | |||
| 146 | gpt7cfg1.frequency = 2 * freq * AUDIO_DAC_BUFFER_SIZE; | ||
| 147 | channel_2_start(); | ||
| 148 | } | ||
| 149 | float channel_2_get_frequency(void) { return channel_2_frequency; } | ||
| 150 | |||
| 151 | static void gpt_audio_state_cb(GPTDriver *gptp) { | ||
| 152 | if (audio_update_state()) { | ||
| 153 | #if defined(AUDIO_PIN_ALT_AS_NEGATIVE) | ||
| 154 | // one piezo/speaker connected to both audio pins, the generated square-waves are inverted | ||
| 155 | channel_1_set_frequency(audio_get_processed_frequency(0)); | ||
| 156 | channel_2_set_frequency(audio_get_processed_frequency(0)); | ||
| 157 | |||
| 158 | #else // two separate audio outputs/speakers | ||
| 159 | // primary speaker on A4, optional secondary on A5 | ||
| 160 | if (AUDIO_PIN == A4) { | ||
| 161 | channel_1_set_frequency(audio_get_processed_frequency(0)); | ||
| 162 | if (AUDIO_PIN_ALT == A5) { | ||
| 163 | if (audio_get_number_of_active_tones() > 1) { | ||
| 164 | channel_2_set_frequency(audio_get_processed_frequency(1)); | ||
| 165 | } else { | ||
| 166 | channel_2_stop(); | ||
| 167 | } | ||
| 168 | } | ||
| 169 | } | ||
| 170 | |||
| 171 | // primary speaker on A5, optional secondary on A4 | ||
| 172 | if (AUDIO_PIN == A5) { | ||
| 173 | channel_2_set_frequency(audio_get_processed_frequency(0)); | ||
| 174 | if (AUDIO_PIN_ALT == A4) { | ||
| 175 | if (audio_get_number_of_active_tones() > 1) { | ||
| 176 | channel_1_set_frequency(audio_get_processed_frequency(1)); | ||
| 177 | } else { | ||
| 178 | channel_1_stop(); | ||
| 179 | } | ||
| 180 | } | ||
| 181 | } | ||
| 182 | #endif | ||
| 183 | } | ||
| 184 | } | ||
| 185 | |||
| 186 | void audio_driver_initialize() { | ||
| 187 | if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) { | ||
| 188 | palSetPadMode(GPIOA, 4, PAL_MODE_INPUT_ANALOG); | ||
| 189 | dacStart(&DACD1, &dac_conf_ch1); | ||
| 190 | |||
| 191 | // initial setup of the dac-triggering timer is still required, even | ||
| 192 | // though it gets reconfigured and restarted later on | ||
| 193 | gptStart(&GPTD6, &gpt6cfg1); | ||
| 194 | } | ||
| 195 | |||
| 196 | if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) { | ||
| 197 | palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG); | ||
| 198 | dacStart(&DACD2, &dac_conf_ch2); | ||
| 199 | |||
| 200 | gptStart(&GPTD7, &gpt7cfg1); | ||
| 201 | } | ||
| 202 | |||
| 203 | /* enable the output buffer, to directly drive external loads with no additional circuitry | ||
| 204 | * | ||
| 205 | * see: AN4566 Application note: Extending the DAC performance of STM32 microcontrollers | ||
| 206 | * Note: Buffer-Off bit -> has to be set 0 to enable the output buffer | ||
| 207 | * Note: enabling the output buffer imparts an additional dc-offset of a couple mV | ||
| 208 | * | ||
| 209 | * this is done here, reaching directly into the stm32 registers since chibios has not implemented BOFF handling yet | ||
| 210 | * (see: chibios/os/hal/ports/STM32/todo.txt '- BOFF handling in DACv1.' | ||
| 211 | */ | ||
| 212 | DACD1.params->dac->CR &= ~DAC_CR_BOFF1; | ||
| 213 | DACD2.params->dac->CR &= ~DAC_CR_BOFF2; | ||
| 214 | |||
| 215 | // start state-updater | ||
| 216 | gptStart(&AUDIO_STATE_TIMER, &gptStateUpdateCfg); | ||
| 217 | } | ||
| 218 | |||
| 219 | void audio_driver_stop(void) { | ||
| 220 | if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) { | ||
| 221 | gptStopTimer(&GPTD6); | ||
| 222 | |||
| 223 | // stop the ongoing conversion and put the output in a known state | ||
| 224 | dacStopConversion(&DACD1); | ||
| 225 | dacPutChannelX(&DACD1, 0, AUDIO_DAC_OFF_VALUE); | ||
| 226 | } | ||
| 227 | |||
| 228 | if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) { | ||
| 229 | gptStopTimer(&GPTD7); | ||
| 230 | |||
| 231 | dacStopConversion(&DACD2); | ||
| 232 | dacPutChannelX(&DACD2, 0, AUDIO_DAC_OFF_VALUE); | ||
| 233 | } | ||
| 234 | gptStopTimer(&AUDIO_STATE_TIMER); | ||
| 235 | } | ||
| 236 | |||
| 237 | void audio_driver_start(void) { | ||
| 238 | if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) { | ||
| 239 | dacStartConversion(&DACD1, &dac_conv_grp_ch1, (dacsample_t *)dac_buffer_1, AUDIO_DAC_BUFFER_SIZE); | ||
| 240 | } | ||
| 241 | if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) { | ||
| 242 | dacStartConversion(&DACD2, &dac_conv_grp_ch2, (dacsample_t *)dac_buffer_2, AUDIO_DAC_BUFFER_SIZE); | ||
| 243 | } | ||
| 244 | gptStartContinuous(&AUDIO_STATE_TIMER, 2U); | ||
| 245 | } | ||
