aboutsummaryrefslogtreecommitdiff
path: root/quantum/process_keycode/process_key_lock.c
diff options
context:
space:
mode:
Diffstat (limited to 'quantum/process_keycode/process_key_lock.c')
-rw-r--r--quantum/process_keycode/process_key_lock.c138
1 files changed, 138 insertions, 0 deletions
diff --git a/quantum/process_keycode/process_key_lock.c b/quantum/process_keycode/process_key_lock.c
new file mode 100644
index 000000000..d7978f91c
--- /dev/null
+++ b/quantum/process_keycode/process_key_lock.c
@@ -0,0 +1,138 @@
1/* Copyright 2017 Fredric Silberberg
2 *
3 * This program is free software: you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation, either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16
17#include "inttypes.h"
18#include "stdint.h"
19#include "process_key_lock.h"
20
21#define BV_64(shift) (((uint64_t)1) << (shift))
22#define GET_KEY_ARRAY(code) (((code) < 0x40) ? key_state[0] : \
23 ((code) < 0x80) ? key_state[1] : \
24 ((code) < 0xC0) ? key_state[2] : key_state[3])
25#define GET_CODE_INDEX(code) (((code) < 0x40) ? (code) : \
26 ((code) < 0x80) ? (code) - 0x40 : \
27 ((code) < 0xC0) ? (code) - 0x80 : (code) - 0xC0)
28#define KEY_STATE(code) (GET_KEY_ARRAY(code) & BV_64(GET_CODE_INDEX(code))) == BV_64(GET_CODE_INDEX(code))
29#define SET_KEY_ARRAY_STATE(code, val) do { \
30 switch (code) { \
31 case 0x00 ... 0x3F: \
32 key_state[0] = (val); \
33 break; \
34 case 0x40 ... 0x7F: \
35 key_state[1] = (val); \
36 break; \
37 case 0x80 ... 0xBF: \
38 key_state[2] = (val); \
39 break; \
40 case 0xC0 ... 0xFF: \
41 key_state[3] = (val); \
42 break; \
43 } \
44} while(0)
45#define SET_KEY_STATE(code) SET_KEY_ARRAY_STATE(code, (GET_KEY_ARRAY(code) | BV_64(GET_CODE_INDEX(code))))
46#define UNSET_KEY_STATE(code) SET_KEY_ARRAY_STATE(code, (GET_KEY_ARRAY(code)) & ~(BV_64(GET_CODE_INDEX(code))))
47#define IS_STANDARD_KEYCODE(code) ((code) <= 0xFF)
48
49// Locked key state. This is an array of 256 bits, one for each of the standard keys supported qmk.
50uint64_t key_state[4] = { 0x0, 0x0, 0x0, 0x0 };
51bool watching = false;
52
53// Translate any OSM keycodes back to their unmasked versions.
54uint16_t inline translate_keycode(uint16_t keycode) {
55 if (keycode > QK_ONE_SHOT_MOD && keycode <= QK_ONE_SHOT_MOD_MAX) {
56 return keycode ^ QK_ONE_SHOT_MOD;
57 } else {
58 return keycode;
59 }
60}
61
62bool process_key_lock(uint16_t *keycode, keyrecord_t *record) {
63 // We start by categorizing the keypress event. In the event of a down
64 // event, there are several possibilities:
65 // 1. The key is not being locked, and we are not watching for new keys.
66 // In this case, we bail immediately. This is the common case for down events.
67 // 2. The key was locked, and we need to unlock it. In this case, we will
68 // reset the state in our map and return false. When the user releases the
69 // key, the up event will no longer be masked and the OS will observe the
70 // released key.
71 // 3. KC_LOCK was just pressed. In this case, we set up the state machine
72 // to watch for the next key down event, and finish processing
73 // 4. The keycode is below 0xFF, and we are watching for new keys. In this case,
74 // we will send the key down event to the os, and set the key_state for that
75 // key to mask the up event.
76 // 5. The keycode is above 0xFF, and we're wathing for new keys. In this case,
77 // the user pressed a key that we cannot "lock", as it's a series of keys,
78 // or a macro invocation, or a layer transition, or a custom-defined key, or
79 // or some other arbitrary code. In this case, we bail immediately, reset
80 // our watch state, and return true.
81 //
82 // In the event of an up event, there are these possibilities:
83 // 1. The key is not being locked. In this case, we return true and bail
84 // immediately. This is the common case.
85 // 2. The key is being locked. In this case, we will mask the up event
86 // by returning false, so the OS never sees that the key was released
87 // until the user pressed the key again.
88
89 // We translate any OSM keycodes back to their original keycodes, so that if the key being
90 // one-shot modded is a standard keycode, we can handle it. This is the only set of special
91 // keys that we handle
92 uint16_t translated_keycode = translate_keycode(*keycode);
93
94 if (record->event.pressed) {
95 // Non-standard keycode, reset and return
96 if (!(IS_STANDARD_KEYCODE(translated_keycode) || translated_keycode == KC_LOCK)) {
97 watching = false;
98 return true;
99 }
100
101 // If we're already watching, turn off the watch.
102 if (translated_keycode == KC_LOCK) {
103 watching = !watching;
104 return false;
105 }
106
107 if (IS_STANDARD_KEYCODE(translated_keycode)) {
108 // We check watching first. This is so that in the following scenario, we continue to
109 // hold the key: KC_LOCK, KC_F, KC_LOCK, KC_F
110 // If we checked in reverse order, we'd end up holding the key pressed after the second
111 // KC_F press is registered, when the user likely meant to hold F
112 if (watching) {
113 watching = false;
114 SET_KEY_STATE(translated_keycode);
115 // We need to set the keycode passed in to be the translated keycode, in case we
116 // translated a OSM back to the original keycode.
117 *keycode = translated_keycode;
118 // Let the standard keymap send the keycode down event. The up event will be masked.
119 return true;
120 }
121
122 if (KEY_STATE(translated_keycode)) {
123 UNSET_KEY_STATE(translated_keycode);
124 // The key is already held, stop this process. The up event will be sent when the user
125 // releases the key.
126 return false;
127 }
128 }
129
130 // Either the key isn't a standard key, or we need to send the down event. Continue standard
131 // processing
132 return true;
133 } else {
134 // Stop processing if it's a standard key and we're masking up.
135 return !(IS_STANDARD_KEYCODE(translated_keycode) && KEY_STATE(translated_keycode));
136 }
137}
138