aboutsummaryrefslogtreecommitdiff
path: root/quantum/quantum.c
diff options
context:
space:
mode:
Diffstat (limited to 'quantum/quantum.c')
-rw-r--r--quantum/quantum.c509
1 files changed, 0 insertions, 509 deletions
diff --git a/quantum/quantum.c b/quantum/quantum.c
index 16922dd01..f4999456e 100644
--- a/quantum/quantum.c
+++ b/quantum/quantum.c
@@ -24,10 +24,6 @@
24# include "outputselect.h" 24# include "outputselect.h"
25#endif 25#endif
26 26
27#ifndef BREATHING_PERIOD
28# define BREATHING_PERIOD 6
29#endif
30
31#include "backlight.h" 27#include "backlight.h"
32extern backlight_config_t backlight_config; 28extern backlight_config_t backlight_config;
33 29
@@ -1019,511 +1015,6 @@ void matrix_scan_quantum() {
1019 1015
1020 matrix_scan_kb(); 1016 matrix_scan_kb();
1021} 1017}
1022#if defined(BACKLIGHT_ENABLE) && (defined(BACKLIGHT_PIN) || defined(BACKLIGHT_PINS))
1023
1024// This logic is a bit complex, we support 3 setups:
1025//
1026// 1. Hardware PWM when backlight is wired to a PWM pin.
1027// Depending on this pin, we use a different output compare unit.
1028// 2. Software PWM with hardware timers, but the used timer
1029// depends on the Audio setup (Audio wins over Backlight).
1030// 3. Full software PWM, driven by the matrix scan, if both timers are used by Audio.
1031
1032# if (defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB647__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1287__) || defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__)) && (BACKLIGHT_PIN == B5 || BACKLIGHT_PIN == B6 || BACKLIGHT_PIN == B7)
1033# define HARDWARE_PWM
1034# define ICRx ICR1
1035# define TCCRxA TCCR1A
1036# define TCCRxB TCCR1B
1037# define TIMERx_OVF_vect TIMER1_OVF_vect
1038# define TIMSKx TIMSK1
1039# define TOIEx TOIE1
1040
1041# if BACKLIGHT_PIN == B5
1042# define COMxx1 COM1A1
1043# define OCRxx OCR1A
1044# elif BACKLIGHT_PIN == B6
1045# define COMxx1 COM1B1
1046# define OCRxx OCR1B
1047# elif BACKLIGHT_PIN == B7
1048# define COMxx1 COM1C1
1049# define OCRxx OCR1C
1050# endif
1051# elif (defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB647__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1287__) || defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__)) && (BACKLIGHT_PIN == C4 || BACKLIGHT_PIN == C5 || BACKLIGHT_PIN == C6)
1052# define HARDWARE_PWM
1053# define ICRx ICR3
1054# define TCCRxA TCCR3A
1055# define TCCRxB TCCR3B
1056# define TIMERx_OVF_vect TIMER3_OVF_vect
1057# define TIMSKx TIMSK3
1058# define TOIEx TOIE3
1059
1060# if BACKLIGHT_PIN == C4
1061# if (defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__))
1062# error This MCU has no C4 pin!
1063# else
1064# define COMxx1 COM3C1
1065# define OCRxx OCR3C
1066# endif
1067# elif BACKLIGHT_PIN == C5
1068# if (defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__))
1069# error This MCU has no C5 pin!
1070# else
1071# define COMxx1 COM3B1
1072# define OCRxx OCR3B
1073# endif
1074# elif BACKLIGHT_PIN == C6
1075# define COMxx1 COM3A1
1076# define OCRxx OCR3A
1077# endif
1078# elif (defined(__AVR_ATmega16U2__) || defined(__AVR_ATmega32U2__)) && (BACKLIGHT_PIN == B7 || BACKLIGHT_PIN == C5 || BACKLIGHT_PIN == C6)
1079# define HARDWARE_PWM
1080# define ICRx ICR1
1081# define TCCRxA TCCR1A
1082# define TCCRxB TCCR1B
1083# define TIMERx_OVF_vect TIMER1_OVF_vect
1084# define TIMSKx TIMSK1
1085# define TOIEx TOIE1
1086
1087# if BACKLIGHT_PIN == B7
1088# define COMxx1 COM1C1
1089# define OCRxx OCR1C
1090# elif BACKLIGHT_PIN == C5
1091# define COMxx1 COM1B1
1092# define OCRxx OCR1B
1093# elif BACKLIGHT_PIN == C6
1094# define COMxx1 COM1A1
1095# define OCRxx OCR1A
1096# endif
1097# elif defined(__AVR_ATmega32A__) && (BACKLIGHT_PIN == D4 || BACKLIGHT_PIN == D5)
1098# define HARDWARE_PWM
1099# define ICRx ICR1
1100# define TCCRxA TCCR1A
1101# define TCCRxB TCCR1B
1102# define TIMERx_OVF_vect TIMER1_OVF_vect
1103# define TIMSKx TIMSK
1104# define TOIEx TOIE1
1105
1106# if BACKLIGHT_PIN == D4
1107# define COMxx1 COM1B1
1108# define OCRxx OCR1B
1109# elif BACKLIGHT_PIN == D5
1110# define COMxx1 COM1A1
1111# define OCRxx OCR1A
1112# endif
1113# elif defined(__AVR_ATmega328P__) && (BACKLIGHT_PIN == B1 || BACKLIGHT_PIN == B2)
1114# define HARDWARE_PWM
1115# define ICRx ICR1
1116# define TCCRxA TCCR1A
1117# define TCCRxB TCCR1B
1118# define TIMERx_OVF_vect TIMER1_OVF_vect
1119# define TIMSKx TIMSK1
1120# define TOIEx TOIE1
1121
1122# if BACKLIGHT_PIN == B1
1123# define COMxx1 COM1A1
1124# define OCRxx OCR1A
1125# elif BACKLIGHT_PIN == B2
1126# define COMxx1 COM1B1
1127# define OCRxx OCR1B
1128# endif
1129# else
1130# if !defined(BACKLIGHT_CUSTOM_DRIVER)
1131# if !defined(B5_AUDIO) && !defined(B6_AUDIO) && !defined(B7_AUDIO)
1132// Timer 1 is not in use by Audio feature, Backlight can use it
1133# pragma message "Using hardware timer 1 with software PWM"
1134# define HARDWARE_PWM
1135# define BACKLIGHT_PWM_TIMER
1136# define ICRx ICR1
1137# define TCCRxA TCCR1A
1138# define TCCRxB TCCR1B
1139# define TIMERx_COMPA_vect TIMER1_COMPA_vect
1140# define TIMERx_OVF_vect TIMER1_OVF_vect
1141# if defined(__AVR_ATmega32A__) // This MCU has only one TIMSK register
1142# define TIMSKx TIMSK
1143# else
1144# define TIMSKx TIMSK1
1145# endif
1146# define TOIEx TOIE1
1147
1148# define OCIExA OCIE1A
1149# define OCRxx OCR1A
1150# elif !defined(C6_AUDIO) && !defined(C5_AUDIO) && !defined(C4_AUDIO)
1151# pragma message "Using hardware timer 3 with software PWM"
1152// Timer 3 is not in use by Audio feature, Backlight can use it
1153# define HARDWARE_PWM
1154# define BACKLIGHT_PWM_TIMER
1155# define ICRx ICR1
1156# define TCCRxA TCCR3A
1157# define TCCRxB TCCR3B
1158# define TIMERx_COMPA_vect TIMER3_COMPA_vect
1159# define TIMERx_OVF_vect TIMER3_OVF_vect
1160# define TIMSKx TIMSK3
1161# define TOIEx TOIE3
1162
1163# define OCIExA OCIE3A
1164# define OCRxx OCR3A
1165# else
1166# pragma message "Audio in use - using pure software PWM"
1167# define NO_HARDWARE_PWM
1168# endif
1169# else
1170# pragma message "Custom driver defined - using pure software PWM"
1171# define NO_HARDWARE_PWM
1172# endif
1173# endif
1174
1175# ifndef BACKLIGHT_ON_STATE
1176# define BACKLIGHT_ON_STATE 0
1177# endif
1178
1179void backlight_on(uint8_t backlight_pin) {
1180# if BACKLIGHT_ON_STATE == 0
1181 writePinLow(backlight_pin);
1182# else
1183 writePinHigh(backlight_pin);
1184# endif
1185}
1186
1187void backlight_off(uint8_t backlight_pin) {
1188# if BACKLIGHT_ON_STATE == 0
1189 writePinHigh(backlight_pin);
1190# else
1191 writePinLow(backlight_pin);
1192# endif
1193}
1194
1195# if defined(NO_HARDWARE_PWM) || defined(BACKLIGHT_PWM_TIMER) // pwm through software
1196
1197// we support multiple backlight pins
1198# ifndef BACKLIGHT_LED_COUNT
1199# define BACKLIGHT_LED_COUNT 1
1200# endif
1201
1202# if BACKLIGHT_LED_COUNT == 1
1203# define BACKLIGHT_PIN_INIT \
1204 { BACKLIGHT_PIN }
1205# else
1206# define BACKLIGHT_PIN_INIT BACKLIGHT_PINS
1207# endif
1208
1209# define FOR_EACH_LED(x) \
1210 for (uint8_t i = 0; i < BACKLIGHT_LED_COUNT; i++) { \
1211 uint8_t backlight_pin = backlight_pins[i]; \
1212 { x } \
1213 }
1214
1215static const uint8_t backlight_pins[BACKLIGHT_LED_COUNT] = BACKLIGHT_PIN_INIT;
1216
1217# else // full hardware PWM
1218
1219// we support only one backlight pin
1220static const uint8_t backlight_pin = BACKLIGHT_PIN;
1221# define FOR_EACH_LED(x) x
1222
1223# endif
1224
1225# ifdef NO_HARDWARE_PWM
1226__attribute__((weak)) void backlight_init_ports(void) {
1227 // Setup backlight pin as output and output to on state.
1228 FOR_EACH_LED(setPinOutput(backlight_pin); backlight_on(backlight_pin);)
1229
1230# ifdef BACKLIGHT_BREATHING
1231 if (is_backlight_breathing()) {
1232 breathing_enable();
1233 }
1234# endif
1235}
1236
1237__attribute__((weak)) void backlight_set(uint8_t level) {}
1238
1239uint8_t backlight_tick = 0;
1240
1241# ifndef BACKLIGHT_CUSTOM_DRIVER
1242void backlight_task(void) {
1243 if ((0xFFFF >> ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2))) & (1 << backlight_tick)) {
1244 FOR_EACH_LED(backlight_on(backlight_pin);)
1245 } else {
1246 FOR_EACH_LED(backlight_off(backlight_pin);)
1247 }
1248 backlight_tick = (backlight_tick + 1) % 16;
1249}
1250# endif
1251
1252# ifdef BACKLIGHT_BREATHING
1253# ifndef BACKLIGHT_CUSTOM_DRIVER
1254# error "Backlight breathing only available with hardware PWM. Please disable."
1255# endif
1256# endif
1257
1258# else // hardware pwm through timer
1259
1260# ifdef BACKLIGHT_PWM_TIMER
1261
1262// The idea of software PWM assisted by hardware timers is the following
1263// we use the hardware timer in fast PWM mode like for hardware PWM, but
1264// instead of letting the Output Match Comparator control the led pin
1265// (which is not possible since the backlight is not wired to PWM pins on the
1266// CPU), we do the LED on/off by oursleves.
1267// The timer is setup to count up to 0xFFFF, and we set the Output Compare
1268// register to the current 16bits backlight level (after CIE correction).
1269// This means the CPU will trigger a compare match interrupt when the counter
1270// reaches the backlight level, where we turn off the LEDs,
1271// but also an overflow interrupt when the counter rolls back to 0,
1272// in which we're going to turn on the LEDs.
1273// The LED will then be on for OCRxx/0xFFFF time, adjusted every 244Hz.
1274
1275// Triggered when the counter reaches the OCRx value
1276ISR(TIMERx_COMPA_vect) { FOR_EACH_LED(backlight_off(backlight_pin);) }
1277
1278// Triggered when the counter reaches the TOP value
1279// this one triggers at F_CPU/65536 =~ 244 Hz
1280ISR(TIMERx_OVF_vect) {
1281# ifdef BACKLIGHT_BREATHING
1282 if (is_breathing()) {
1283 breathing_task();
1284 }
1285# endif
1286 // for very small values of OCRxx (or backlight level)
1287 // we can't guarantee this whole code won't execute
1288 // at the same time as the compare match interrupt
1289 // which means that we might turn on the leds while
1290 // trying to turn them off, leading to flickering
1291 // artifacts (especially while breathing, because breathing_task
1292 // takes many computation cycles).
1293 // so better not turn them on while the counter TOP is very low.
1294 if (OCRxx > 256) {
1295 FOR_EACH_LED(backlight_on(backlight_pin);)
1296 }
1297}
1298
1299# endif
1300
1301# define TIMER_TOP 0xFFFFU
1302
1303// See http://jared.geek.nz/2013/feb/linear-led-pwm
1304static uint16_t cie_lightness(uint16_t v) {
1305 if (v <= 5243) // if below 8% of max
1306 return v / 9; // same as dividing by 900%
1307 else {
1308 uint32_t y = (((uint32_t)v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare
1309 // to get a useful result with integer division, we shift left in the expression above
1310 // and revert what we've done again after squaring.
1311 y = y * y * y >> 8;
1312 if (y > 0xFFFFUL) // prevent overflow
1313 return 0xFFFFU;
1314 else
1315 return (uint16_t)y;
1316 }
1317}
1318
1319// range for val is [0..TIMER_TOP]. PWM pin is high while the timer count is below val.
1320static inline void set_pwm(uint16_t val) { OCRxx = val; }
1321
1322# ifndef BACKLIGHT_CUSTOM_DRIVER
1323__attribute__((weak)) void backlight_set(uint8_t level) {
1324 if (level > BACKLIGHT_LEVELS) level = BACKLIGHT_LEVELS;
1325
1326 if (level == 0) {
1327# ifdef BACKLIGHT_PWM_TIMER
1328 if (OCRxx) {
1329 TIMSKx &= ~(_BV(OCIExA));
1330 TIMSKx &= ~(_BV(TOIEx));
1331 FOR_EACH_LED(backlight_off(backlight_pin);)
1332 }
1333# else
1334 // Turn off PWM control on backlight pin
1335 TCCRxA &= ~(_BV(COMxx1));
1336# endif
1337 } else {
1338# ifdef BACKLIGHT_PWM_TIMER
1339 if (!OCRxx) {
1340 TIMSKx |= _BV(OCIExA);
1341 TIMSKx |= _BV(TOIEx);
1342 }
1343# else
1344 // Turn on PWM control of backlight pin
1345 TCCRxA |= _BV(COMxx1);
1346# endif
1347 }
1348 // Set the brightness
1349 set_pwm(cie_lightness(TIMER_TOP * (uint32_t)level / BACKLIGHT_LEVELS));
1350}
1351
1352void backlight_task(void) {}
1353# endif // BACKLIGHT_CUSTOM_DRIVER
1354
1355# ifdef BACKLIGHT_BREATHING
1356
1357# define BREATHING_NO_HALT 0
1358# define BREATHING_HALT_OFF 1
1359# define BREATHING_HALT_ON 2
1360# define BREATHING_STEPS 128
1361
1362static uint8_t breathing_period = BREATHING_PERIOD;
1363static uint8_t breathing_halt = BREATHING_NO_HALT;
1364static uint16_t breathing_counter = 0;
1365
1366# ifdef BACKLIGHT_PWM_TIMER
1367static bool breathing = false;
1368
1369bool is_breathing(void) { return breathing; }
1370
1371# define breathing_interrupt_enable() \
1372 do { \
1373 breathing = true; \
1374 } while (0)
1375# define breathing_interrupt_disable() \
1376 do { \
1377 breathing = false; \
1378 } while (0)
1379# else
1380
1381bool is_breathing(void) { return !!(TIMSKx & _BV(TOIEx)); }
1382
1383# define breathing_interrupt_enable() \
1384 do { \
1385 TIMSKx |= _BV(TOIEx); \
1386 } while (0)
1387# define breathing_interrupt_disable() \
1388 do { \
1389 TIMSKx &= ~_BV(TOIEx); \
1390 } while (0)
1391# endif
1392
1393# define breathing_min() \
1394 do { \
1395 breathing_counter = 0; \
1396 } while (0)
1397# define breathing_max() \
1398 do { \
1399 breathing_counter = breathing_period * 244 / 2; \
1400 } while (0)
1401
1402void breathing_enable(void) {
1403 breathing_counter = 0;
1404 breathing_halt = BREATHING_NO_HALT;
1405 breathing_interrupt_enable();
1406}
1407
1408void breathing_pulse(void) {
1409 if (get_backlight_level() == 0)
1410 breathing_min();
1411 else
1412 breathing_max();
1413 breathing_halt = BREATHING_HALT_ON;
1414 breathing_interrupt_enable();
1415}
1416
1417void breathing_disable(void) {
1418 breathing_interrupt_disable();
1419 // Restore backlight level
1420 backlight_set(get_backlight_level());
1421}
1422
1423void breathing_self_disable(void) {
1424 if (get_backlight_level() == 0)
1425 breathing_halt = BREATHING_HALT_OFF;
1426 else
1427 breathing_halt = BREATHING_HALT_ON;
1428}
1429
1430void breathing_toggle(void) {
1431 if (is_breathing())
1432 breathing_disable();
1433 else
1434 breathing_enable();
1435}
1436
1437void breathing_period_set(uint8_t value) {
1438 if (!value) value = 1;
1439 breathing_period = value;
1440}
1441
1442void breathing_period_default(void) { breathing_period_set(BREATHING_PERIOD); }
1443
1444void breathing_period_inc(void) { breathing_period_set(breathing_period + 1); }
1445
1446void breathing_period_dec(void) { breathing_period_set(breathing_period - 1); }
1447
1448/* To generate breathing curve in python:
1449 * from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)]
1450 */
1451static const uint8_t breathing_table[BREATHING_STEPS] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
1452
1453// Use this before the cie_lightness function.
1454static inline uint16_t scale_backlight(uint16_t v) { return v / BACKLIGHT_LEVELS * get_backlight_level(); }
1455
1456# ifdef BACKLIGHT_PWM_TIMER
1457void breathing_task(void)
1458# else
1459/* Assuming a 16MHz CPU clock and a timer that resets at 64k (ICR1), the following interrupt handler will run
1460 * about 244 times per second.
1461 */
1462ISR(TIMERx_OVF_vect)
1463# endif
1464{
1465 uint16_t interval = (uint16_t)breathing_period * 244 / BREATHING_STEPS;
1466 // resetting after one period to prevent ugly reset at overflow.
1467 breathing_counter = (breathing_counter + 1) % (breathing_period * 244);
1468 uint8_t index = breathing_counter / interval % BREATHING_STEPS;
1469
1470 if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) || ((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1))) {
1471 breathing_interrupt_disable();
1472 }
1473
1474 set_pwm(cie_lightness(scale_backlight((uint16_t)pgm_read_byte(&breathing_table[index]) * 0x0101U)));
1475}
1476
1477# endif // BACKLIGHT_BREATHING
1478
1479__attribute__((weak)) void backlight_init_ports(void) {
1480 // Setup backlight pin as output and output to on state.
1481 FOR_EACH_LED(setPinOutput(backlight_pin); backlight_on(backlight_pin);)
1482
1483 // I could write a wall of text here to explain... but TL;DW
1484 // Go read the ATmega32u4 datasheet.
1485 // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
1486
1487# ifdef BACKLIGHT_PWM_TIMER
1488 // TimerX setup, Fast PWM mode count to TOP set in ICRx
1489 TCCRxA = _BV(WGM11); // = 0b00000010;
1490 // clock select clk/1
1491 TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
1492# else // hardware PWM
1493 // Pin PB7 = OCR1C (Timer 1, Channel C)
1494 // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
1495 // (i.e. start high, go low when counter matches.)
1496 // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
1497 // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
1498
1499 /*
1500 14.8.3:
1501 "In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM [..]."
1502 "In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15)."
1503 */
1504 TCCRxA = _BV(COMxx1) | _BV(WGM11); // = 0b00001010;
1505 TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
1506# endif
1507 // Use full 16-bit resolution. Counter counts to ICR1 before reset to 0.
1508 ICRx = TIMER_TOP;
1509
1510 backlight_init();
1511# ifdef BACKLIGHT_BREATHING
1512 if (is_backlight_breathing()) {
1513 breathing_enable();
1514 }
1515# endif
1516}
1517
1518# endif // hardware backlight
1519
1520#else // no backlight
1521
1522__attribute__((weak)) void backlight_init_ports(void) {}
1523
1524__attribute__((weak)) void backlight_set(uint8_t level) {}
1525
1526#endif // backlight
1527 1018
1528#ifdef HD44780_ENABLED 1019#ifdef HD44780_ENABLED
1529# include "hd44780.h" 1020# include "hd44780.h"