aboutsummaryrefslogtreecommitdiff
path: root/users/drashna/oled/sh110x.c
diff options
context:
space:
mode:
Diffstat (limited to 'users/drashna/oled/sh110x.c')
-rw-r--r--users/drashna/oled/sh110x.c860
1 files changed, 860 insertions, 0 deletions
diff --git a/users/drashna/oled/sh110x.c b/users/drashna/oled/sh110x.c
new file mode 100644
index 000000000..c850a4753
--- /dev/null
+++ b/users/drashna/oled/sh110x.c
@@ -0,0 +1,860 @@
1/*
2Copyright 2019 Ryan Caltabiano <https://github.com/XScorpion2>
3
4This program is free software: you can redistribute it and/or modify
5it under the terms of the GNU General Public License as published by
6the Free Software Foundation, either version 2 of the License, or
7(at your option) any later version.
8
9This program is distributed in the hope that it will be useful,
10but WITHOUT ANY WARRANTY; without even the implied warranty of
11MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12GNU General Public License for more details.
13
14You should have received a copy of the GNU General Public License
15along with this program. If not, see <http://www.gnu.org/licenses/>.
16*/
17#include "i2c_master.h"
18#include "oled_driver.h"
19#include OLED_FONT_H
20#include "timer.h"
21#include "print.h"
22
23#include <string.h>
24
25#include "progmem.h"
26
27#include "keyboard.h"
28
29// Used commands from spec sheet: https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
30// for SH1106: https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf
31
32// Fundamental Commands
33#define CONTRAST 0x81
34#define DISPLAY_ALL_ON 0xA5
35#define DISPLAY_ALL_ON_RESUME 0xA4
36#define NORMAL_DISPLAY 0xA6
37#define INVERT_DISPLAY 0xA7
38#define DISPLAY_ON 0xAF
39#define DISPLAY_OFF 0xAE
40#define NOP 0xE3
41
42// Scrolling Commands
43#define ACTIVATE_SCROLL 0x2F
44#define DEACTIVATE_SCROLL 0x2E
45#define SCROLL_RIGHT 0x26
46#define SCROLL_LEFT 0x27
47#define SCROLL_RIGHT_UP 0x29
48#define SCROLL_LEFT_UP 0x2A
49
50// Addressing Setting Commands
51#define MEMORY_MODE 0x20
52#define COLUMN_ADDR 0x21
53#define PAGE_ADDR 0x22
54#define PAM_SETCOLUMN_LSB 0x00
55#define PAM_SETCOLUMN_MSB 0x10
56#define PAM_PAGE_ADDR 0xB0 // 0xb0 -- 0xb7
57
58// Hardware Configuration Commands
59#define DISPLAY_START_LINE 0x40
60#define SEGMENT_REMAP 0xA0
61#define SEGMENT_REMAP_INV 0xA1
62#define MULTIPLEX_RATIO 0xA8
63#define COM_SCAN_INC 0xC0
64#define COM_SCAN_DEC 0xC8
65#define DISPLAY_OFFSET 0xD3
66#define COM_PINS 0xDA
67#define COM_PINS_SEQ 0x02
68#define COM_PINS_ALT 0x12
69#define COM_PINS_SEQ_LR 0x22
70#define COM_PINS_ALT_LR 0x32
71
72// Timing & Driving Commands
73#define DISPLAY_CLOCK 0xD5
74#define PRE_CHARGE_PERIOD 0xD9
75#define VCOM_DETECT 0xDB
76
77// Advance Graphic Commands
78#define FADE_BLINK 0x23
79#define ENABLE_FADE 0x20
80#define ENABLE_BLINK 0x30
81
82// Charge Pump Commands
83#define CHARGE_PUMP 0x8D
84
85// Commands specific to the SH1107 chip
86#define SH1107_DISPLAY_START_LINE 0xDC
87#define SH1107_MEMORY_MODE_PAGE 0x20
88#define SH1107_MEMORY_MODE_VERTICAL 0x21
89
90// Misc defines
91#ifndef OLED_BLOCK_COUNT
92# define OLED_BLOCK_COUNT (sizeof(OLED_BLOCK_TYPE) * 8)
93#endif
94#ifndef OLED_BLOCK_SIZE
95# define OLED_BLOCK_SIZE (OLED_MATRIX_SIZE / OLED_BLOCK_COUNT)
96#endif
97
98#define OLED_ALL_BLOCKS_MASK (((((OLED_BLOCK_TYPE)1 << (OLED_BLOCK_COUNT - 1)) - 1) << 1) | 1)
99
100#define OLED_IC_HAS_HORIZONTAL_MODE (OLED_IC == OLED_IC_SSD1306)
101#define OLED_IC_COM_PINS_ARE_COLUMNS (OLED_IC == OLED_IC_SH1107)
102
103#ifndef OLED_COM_PIN_COUNT
104# if OLED_IC == OLED_IC_SH1106
105# define OLED_COM_PIN_COUNT 64
106# elif OLED_IC == OLED_IC_SH1107
107# define OLED_COM_PIN_COUNT 128
108# else
109# error Invalid OLED_IC value
110# endif
111#endif
112
113#ifndef OLED_COM_PIN_OFFSET
114# define OLED_COM_PIN_OFFSET 0
115#endif
116
117// i2c defines
118#define I2C_CMD 0x00
119#define I2C_DATA 0x40
120#if defined(__AVR__)
121# define I2C_TRANSMIT_P(data) i2c_transmit_P((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT)
122#else // defined(__AVR__)
123# define I2C_TRANSMIT_P(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT)
124#endif // defined(__AVR__)
125#define I2C_TRANSMIT(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), OLED_I2C_TIMEOUT)
126#define I2C_WRITE_REG(mode, data, size) i2c_writeReg((OLED_DISPLAY_ADDRESS << 1), mode, data, size, OLED_I2C_TIMEOUT)
127
128#define HAS_FLAGS(bits, flags) ((bits & flags) == flags)
129
130// Display buffer's is the same as the OLED memory layout
131// this is so we don't end up with rounding errors with
132// parts of the display unusable or don't get cleared correctly
133// and also allows for drawing & inverting
134uint8_t oled_buffer[OLED_MATRIX_SIZE];
135uint8_t * oled_cursor;
136OLED_BLOCK_TYPE oled_dirty = 0;
137bool oled_initialized = false;
138bool oled_active = false;
139bool oled_scrolling = false;
140bool oled_inverted = false;
141uint8_t oled_brightness = OLED_BRIGHTNESS;
142oled_rotation_t oled_rotation = 0;
143uint8_t oled_rotation_width = 0;
144uint8_t oled_scroll_speed = 0; // this holds the speed after being remapped to ssd1306 internal values
145uint8_t oled_scroll_start = 0;
146uint8_t oled_scroll_end = 7;
147#if OLED_TIMEOUT > 0
148uint32_t oled_timeout;
149#endif
150#if OLED_SCROLL_TIMEOUT > 0
151uint32_t oled_scroll_timeout;
152#endif
153#if OLED_UPDATE_INTERVAL > 0
154uint16_t oled_update_timeout;
155#endif
156
157// Internal variables to reduce math instructions
158
159#if defined(__AVR__)
160// identical to i2c_transmit, but for PROGMEM since all initialization is in PROGMEM arrays currently
161// probably should move this into i2c_master...
162static i2c_status_t i2c_transmit_P(uint8_t address, const uint8_t *data, uint16_t length, uint16_t timeout) {
163 i2c_status_t status = i2c_start(address | I2C_WRITE, timeout);
164
165 for (uint16_t i = 0; i < length && status >= 0; i++) {
166 status = i2c_write(pgm_read_byte((const char *)data++), timeout);
167 if (status) break;
168 }
169
170 i2c_stop();
171
172 return status;
173}
174#endif
175
176// Flips the rendering bits for a character at the current cursor position
177static void InvertCharacter(uint8_t *cursor) {
178 const uint8_t *end = cursor + OLED_FONT_WIDTH;
179 while (cursor < end) {
180 *cursor = ~(*cursor);
181 cursor++;
182 }
183}
184
185bool oled_init(oled_rotation_t rotation) {
186#if defined(USE_I2C) && defined(SPLIT_KEYBOARD)
187 if (!is_keyboard_master()) {
188 return true;
189 }
190#endif
191
192 oled_rotation = oled_init_user(oled_init_kb(rotation));
193 if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
194 oled_rotation_width = OLED_DISPLAY_WIDTH;
195 } else {
196 oled_rotation_width = OLED_DISPLAY_HEIGHT;
197 }
198 i2c_init();
199
200 static const uint8_t PROGMEM display_setup1[] = {
201 I2C_CMD,
202 DISPLAY_OFF,
203 DISPLAY_CLOCK,
204 0x80,
205 MULTIPLEX_RATIO,
206#if OLED_IC_COM_PINS_ARE_COLUMNS
207 OLED_DISPLAY_WIDTH - 1,
208#else
209 OLED_DISPLAY_HEIGHT - 1,
210#endif
211 DISPLAY_OFFSET,
212 0x00,
213 DISPLAY_START_LINE | 0x00,
214 CHARGE_PUMP,
215 0x14,
216#if (OLED_IC != OLED_IC_SH1106)
217 // MEMORY_MODE is unsupported on SH1106 (Page Addressing only)
218 MEMORY_MODE,
219 0x00, // Horizontal addressing mode
220#elif OLED_IC == OLED_IC_SH1107
221 // Page addressing mode
222 SH1107_MEMORY_MODE_PAGE,
223#endif
224 };
225 if (I2C_TRANSMIT_P(display_setup1) != I2C_STATUS_SUCCESS) {
226 print("oled_init cmd set 1 failed\n");
227 return false;
228 }
229
230 if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_180)) {
231 static const uint8_t PROGMEM display_normal[] = {
232 I2C_CMD, SEGMENT_REMAP_INV, COM_SCAN_DEC, DISPLAY_OFFSET, OLED_COM_PIN_OFFSET,
233 };
234 if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) {
235 print("oled_init cmd normal rotation failed\n");
236 return false;
237 }
238 } else {
239 static const uint8_t PROGMEM display_flipped[] = {
240 I2C_CMD, SEGMENT_REMAP, COM_SCAN_INC, DISPLAY_OFFSET, (OLED_COM_PIN_COUNT - OLED_COM_PIN_OFFSET) % OLED_COM_PIN_COUNT,
241 };
242 if (I2C_TRANSMIT_P(display_flipped) != I2C_STATUS_SUCCESS) {
243 print("display_flipped failed\n");
244 return false;
245 }
246 }
247
248 static const uint8_t PROGMEM display_setup2[] = {I2C_CMD, COM_PINS, OLED_COM_PINS, CONTRAST, OLED_BRIGHTNESS, PRE_CHARGE_PERIOD, 0x22, VCOM_DETECT, 0x35, DISPLAY_ALL_ON_RESUME, NORMAL_DISPLAY, DEACTIVATE_SCROLL, DISPLAY_ON}; if (I2C_TRANSMIT_P(display_setup2) != I2C_STATUS_SUCCESS) {
249 print("display_setup2 failed\n");
250 return false;
251 }
252
253#if OLED_TIMEOUT > 0
254 oled_timeout = timer_read32() + OLED_TIMEOUT;
255#endif
256#if OLED_SCROLL_TIMEOUT > 0
257 oled_scroll_timeout = timer_read32() + OLED_SCROLL_TIMEOUT;
258#endif
259
260 oled_clear();
261 oled_initialized = true;
262 oled_active = true;
263 oled_scrolling = false;
264 return true;
265}
266
267__attribute__((weak)) oled_rotation_t oled_init_kb(oled_rotation_t rotation) { return rotation; }
268__attribute__((weak)) oled_rotation_t oled_init_user(oled_rotation_t rotation) { return rotation; }
269
270void oled_clear(void) {
271 memset(oled_buffer, 0, sizeof(oled_buffer));
272 oled_cursor = &oled_buffer[0];
273 oled_dirty = OLED_ALL_BLOCKS_MASK;
274}
275
276static void calc_bounds(uint8_t update_start, uint8_t *cmd_array) {
277 // Calculate commands to set memory addressing bounds.
278 uint8_t start_page = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_WIDTH;
279 uint8_t start_column = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_WIDTH;
280#if !OLED_IC_HAS_HORIZONTAL_MODE
281 // Commands for Page Addressing Mode. Sets starting page and column; has no end bound.
282 // Column value must be split into high and low nybble and sent as two commands.
283 cmd_array[0] = PAM_PAGE_ADDR | start_page;
284 cmd_array[1] = PAM_SETCOLUMN_LSB | ((OLED_COLUMN_OFFSET + start_column) & 0x0f);
285 cmd_array[2] = PAM_SETCOLUMN_MSB | ((OLED_COLUMN_OFFSET + start_column) >> 4 & 0x0f);
286 cmd_array[3] = NOP;
287 cmd_array[4] = NOP;
288 cmd_array[5] = NOP;
289#else
290 // Commands for use in Horizontal Addressing mode.
291 cmd_array[1] = start_column + OLED_COLUMN_OFFSET;
292 cmd_array[4] = start_page;
293 cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) % OLED_DISPLAY_WIDTH + cmd_array[1];
294 cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) / OLED_DISPLAY_WIDTH - 1 + cmd_array[4];
295#endif
296}
297
298static void calc_bounds_90(uint8_t update_start, uint8_t *cmd_array) {
299 // Block numbering starts from the bottom left corner, going up and then to
300 // the right. The controller needs the page and column numbers for the top
301 // left and bottom right corners of that block.
302
303 // Total number of pages across the screen height.
304 const uint8_t height_in_pages = OLED_DISPLAY_HEIGHT / 8;
305
306 // Difference of starting page numbers for adjacent blocks; may be 0 if
307 // blocks are large enough to occupy one or more whole 8px columns.
308 const uint8_t page_inc_per_block = OLED_BLOCK_SIZE % OLED_DISPLAY_HEIGHT / 8;
309
310 // Top page number for a block which is at the bottom edge of the screen.
311 const uint8_t bottom_block_top_page = (height_in_pages - page_inc_per_block) % height_in_pages;
312
313#if !OLED_IC_HAS_HORIZONTAL_MODE
314 // Only the Page Addressing Mode is supported
315 uint8_t start_page = bottom_block_top_page - (OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT / 8);
316 uint8_t start_column = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8;
317 cmd_array[0] = PAM_PAGE_ADDR | start_page;
318 cmd_array[1] = PAM_SETCOLUMN_LSB | ((OLED_COLUMN_OFFSET + start_column) & 0x0f);
319 cmd_array[2] = PAM_SETCOLUMN_MSB | ((OLED_COLUMN_OFFSET + start_column) >> 4 & 0x0f);
320#else
321 cmd_array[1] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8 + OLED_COLUMN_OFFSET;
322 cmd_array[4] = bottom_block_top_page - (OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT / 8);
323 cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8 - 1 + cmd_array[1];
324 cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) % OLED_DISPLAY_HEIGHT / 8 + cmd_array[4];
325#endif
326}
327
328uint8_t crot(uint8_t a, int8_t n) {
329 const uint8_t mask = 0x7;
330 n &= mask;
331 return a << n | a >> (-n & mask);
332}
333
334static void rotate_90(const uint8_t *src, uint8_t *dest) {
335 for (uint8_t i = 0, shift = 7; i < 8; ++i, --shift) {
336 uint8_t selector = (1 << i);
337 for (uint8_t j = 0; j < 8; ++j) {
338 dest[i] |= crot(src[j] & selector, shift - (int8_t)j);
339 }
340 }
341}
342
343void oled_render(void) {
344 if (!oled_initialized) {
345 return;
346 }
347
348 // Do we have work to do?
349 oled_dirty &= OLED_ALL_BLOCKS_MASK;
350 if (!oled_dirty || oled_scrolling) {
351 return;
352 }
353
354 // Find first dirty block
355 uint8_t update_start = 0;
356 while (!(oled_dirty & ((OLED_BLOCK_TYPE)1 << update_start))) {
357 ++update_start;
358 }
359
360 // Set column & page position
361#if OLED_IC_HAS_HORIZONTAL_MODE
362 static uint8_t display_start[] = {I2C_CMD, COLUMN_ADDR, 0, OLED_DISPLAY_WIDTH - 1, PAGE_ADDR, 0, OLED_DISPLAY_HEIGHT / 8 - 1};
363#else
364 static uint8_t display_start[] = {I2C_CMD, PAM_PAGE_ADDR, PAM_SETCOLUMN_LSB, PAM_SETCOLUMN_MSB};
365#endif
366 if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
367 calc_bounds(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
368 } else {
369 calc_bounds_90(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
370 }
371
372 // Send column & page position
373 if (I2C_TRANSMIT(display_start) != I2C_STATUS_SUCCESS) {
374 print("oled_render offset command failed\n");
375 return;
376 }
377
378 if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
379 // Send render data chunk as is
380 if (I2C_WRITE_REG(I2C_DATA, &oled_buffer[OLED_BLOCK_SIZE * update_start], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
381 print("oled_render data failed\n");
382 return;
383 }
384 } else {
385 // Rotate the render chunks
386 const static uint8_t source_map[] = OLED_SOURCE_MAP;
387 const static uint8_t target_map[] = OLED_TARGET_MAP;
388
389 static uint8_t temp_buffer[OLED_BLOCK_SIZE];
390 memset(temp_buffer, 0, sizeof(temp_buffer));
391 for (uint8_t i = 0; i < sizeof(source_map); ++i) {
392 rotate_90(&oled_buffer[OLED_BLOCK_SIZE * update_start + source_map[i]], &temp_buffer[target_map[i]]);
393 }
394
395#if OLED_IC_HAS_HORIZONTAL_MODE
396 // Send render data chunk after rotating
397 if (I2C_WRITE_REG(I2C_DATA, &temp_buffer[0], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
398 print("oled_render90 data failed\n");
399 return;
400 }
401#else
402 // For SH1106 or SH1107 the data chunk must be split into separate pieces for each page
403 const uint8_t columns_in_block = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8;
404 const uint8_t num_pages = OLED_BLOCK_SIZE / columns_in_block;
405 for (uint8_t i = 0; i < num_pages; ++i) {
406 // Send column & page position for all pages except the first one
407 if (i > 0) {
408 display_start[1]++;
409 if (I2C_TRANSMIT(display_start) != I2C_STATUS_SUCCESS) {
410 print("oled_render offset command failed\n");
411 return;
412 }
413 }
414 // Send data for the page
415 if (I2C_WRITE_REG(I2C_DATA, &temp_buffer[columns_in_block * i], columns_in_block) != I2C_STATUS_SUCCESS) {
416 print("oled_render90 data failed\n");
417 return;
418 }
419 }
420#endif
421 }
422
423 // Turn on display if it is off
424 oled_on();
425
426 // Clear dirty flag
427 oled_dirty &= ~((OLED_BLOCK_TYPE)1 << update_start);
428}
429
430void oled_set_cursor(uint8_t col, uint8_t line) {
431 uint16_t index = line * oled_rotation_width + col * OLED_FONT_WIDTH;
432
433 // Out of bounds?
434 if (index >= OLED_MATRIX_SIZE) {
435 index = 0;
436 }
437
438 oled_cursor = &oled_buffer[index];
439}
440
441void oled_advance_page(bool clearPageRemainder) {
442 uint16_t index = oled_cursor - &oled_buffer[0];
443 uint8_t remaining = oled_rotation_width - (index % oled_rotation_width);
444
445 if (clearPageRemainder) {
446 // Remaining Char count
447 remaining = remaining / OLED_FONT_WIDTH;
448
449 // Write empty character until next line
450 while (remaining--) oled_write_char(' ', false);
451 } else {
452 // Next page index out of bounds?
453 if (index + remaining >= OLED_MATRIX_SIZE) {
454 index = 0;
455 remaining = 0;
456 }
457
458 oled_cursor = &oled_buffer[index + remaining];
459 }
460}
461
462void oled_advance_char(void) {
463 uint16_t nextIndex = oled_cursor - &oled_buffer[0] + OLED_FONT_WIDTH;
464 uint8_t remainingSpace = oled_rotation_width - (nextIndex % oled_rotation_width);
465
466 // Do we have enough space on the current line for the next character
467 if (remainingSpace < OLED_FONT_WIDTH) {
468 nextIndex += remainingSpace;
469 }
470
471 // Did we go out of bounds
472 if (nextIndex >= OLED_MATRIX_SIZE) {
473 nextIndex = 0;
474 }
475
476 // Update cursor position
477 oled_cursor = &oled_buffer[nextIndex];
478}
479
480// Main handler that writes character data to the display buffer
481void oled_write_char(const char data, bool invert) {
482 // Advance to the next line if newline
483 if (data == '\n') {
484 // Old source wrote ' ' until end of line...
485 oled_advance_page(true);
486 return;
487 }
488
489 if (data == '\r') {
490 oled_advance_page(false);
491 return;
492 }
493
494 // copy the current render buffer to check for dirty after
495 static uint8_t oled_temp_buffer[OLED_FONT_WIDTH];
496 memcpy(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH);
497
498 _Static_assert(sizeof(font) >= ((OLED_FONT_END + 1 - OLED_FONT_START) * OLED_FONT_WIDTH), "OLED_FONT_END references outside array");
499
500 // set the reder buffer data
501 uint8_t cast_data = (uint8_t)data; // font based on unsigned type for index
502 if (cast_data < OLED_FONT_START || cast_data > OLED_FONT_END) {
503 memset(oled_cursor, 0x00, OLED_FONT_WIDTH);
504 } else {
505 const uint8_t *glyph = &font[(cast_data - OLED_FONT_START) * OLED_FONT_WIDTH];
506 memcpy_P(oled_cursor, glyph, OLED_FONT_WIDTH);
507 }
508
509 // Invert if needed
510 if (invert) {
511 InvertCharacter(oled_cursor);
512 }
513
514 // Dirty check
515 if (memcmp(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH)) {
516 uint16_t index = oled_cursor - &oled_buffer[0];
517 oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
518 // Edgecase check if the written data spans the 2 chunks
519 oled_dirty |= ((OLED_BLOCK_TYPE)1 << ((index + OLED_FONT_WIDTH - 1) / OLED_BLOCK_SIZE));
520 }
521
522 // Finally move to the next char
523 oled_advance_char();
524}
525
526void oled_write(const char *data, bool invert) {
527 const char *end = data + strlen(data);
528 while (data < end) {
529 oled_write_char(*data, invert);
530 data++;
531 }
532}
533
534void oled_write_ln(const char *data, bool invert) {
535 oled_write(data, invert);
536 oled_advance_page(true);
537}
538
539void oled_pan(bool left) {
540 uint16_t i = 0;
541 for (uint16_t y = 0; y < OLED_DISPLAY_HEIGHT / 8; y++) {
542 if (left) {
543 for (uint16_t x = 0; x < OLED_DISPLAY_WIDTH - 1; x++) {
544 i = y * OLED_DISPLAY_WIDTH + x;
545 oled_buffer[i] = oled_buffer[i + 1];
546 }
547 } else {
548 for (uint16_t x = OLED_DISPLAY_WIDTH - 1; x > 0; x--) {
549 i = y * OLED_DISPLAY_WIDTH + x;
550 oled_buffer[i] = oled_buffer[i - 1];
551 }
552 }
553 }
554 oled_dirty = OLED_ALL_BLOCKS_MASK;
555}
556
557oled_buffer_reader_t oled_read_raw(uint16_t start_index) {
558 if (start_index > OLED_MATRIX_SIZE) start_index = OLED_MATRIX_SIZE;
559 oled_buffer_reader_t ret_reader;
560 ret_reader.current_element = &oled_buffer[start_index];
561 ret_reader.remaining_element_count = OLED_MATRIX_SIZE - start_index;
562 return ret_reader;
563}
564
565void oled_write_raw_byte(const char data, uint16_t index) {
566 if (index > OLED_MATRIX_SIZE) index = OLED_MATRIX_SIZE;
567 if (oled_buffer[index] == data) return;
568 oled_buffer[index] = data;
569 oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
570}
571
572void oled_write_raw(const char *data, uint16_t size) {
573 uint16_t cursor_start_index = oled_cursor - &oled_buffer[0];
574 if ((size + cursor_start_index) > OLED_MATRIX_SIZE) size = OLED_MATRIX_SIZE - cursor_start_index;
575 for (uint16_t i = cursor_start_index; i < cursor_start_index + size; i++) {
576 uint8_t c = *data++;
577 if (oled_buffer[i] == c) continue;
578 oled_buffer[i] = c;
579 oled_dirty |= ((OLED_BLOCK_TYPE)1 << (i / OLED_BLOCK_SIZE));
580 }
581}
582
583void oled_write_pixel(uint8_t x, uint8_t y, bool on) {
584 if (x >= oled_rotation_width) {
585 return;
586 }
587 uint16_t index = x + (y / 8) * oled_rotation_width;
588 if (index >= OLED_MATRIX_SIZE) {
589 return;
590 }
591 uint8_t data = oled_buffer[index];
592 if (on) {
593 data |= (1 << (y % 8));
594 } else {
595 data &= ~(1 << (y % 8));
596 }
597 if (oled_buffer[index] != data) {
598 oled_buffer[index] = data;
599 oled_dirty |= ((OLED_BLOCK_TYPE)1 << (index / OLED_BLOCK_SIZE));
600 }
601}
602
603#if defined(__AVR__)
604void oled_write_P(const char *data, bool invert) {
605 uint8_t c = pgm_read_byte(data);
606 while (c != 0) {
607 oled_write_char(c, invert);
608 c = pgm_read_byte(++data);
609 }
610}
611
612void oled_write_ln_P(const char *data, bool invert) {
613 oled_write_P(data, invert);
614 oled_advance_page(true);
615}
616
617void oled_write_raw_P(const char *data, uint16_t size) {
618 uint16_t cursor_start_index = oled_cursor - &oled_buffer[0];
619 if ((size + cursor_start_index) > OLED_MATRIX_SIZE) size = OLED_MATRIX_SIZE - cursor_start_index;
620 for (uint16_t i = cursor_start_index; i < cursor_start_index + size; i++) {
621 uint8_t c = pgm_read_byte(data++);
622 if (oled_buffer[i] == c) continue;
623 oled_buffer[i] = c;
624 oled_dirty |= ((OLED_BLOCK_TYPE)1 << (i / OLED_BLOCK_SIZE));
625 }
626}
627#endif // defined(__AVR__)
628
629bool oled_on(void) {
630 if (!oled_initialized) {
631 return oled_active;
632 }
633
634#if OLED_TIMEOUT > 0
635 oled_timeout = timer_read32() + OLED_TIMEOUT;
636#endif
637
638 static const uint8_t PROGMEM display_on[] =
639#ifdef OLED_FADE_OUT
640 {I2C_CMD, FADE_BLINK, 0x00};
641#else
642 {I2C_CMD, DISPLAY_ON};
643#endif
644
645 if (!oled_active) {
646 if (I2C_TRANSMIT_P(display_on) != I2C_STATUS_SUCCESS) {
647 print("oled_on cmd failed\n");
648 return oled_active;
649 }
650 oled_active = true;
651 }
652 return oled_active;
653}
654
655bool oled_off(void) {
656 if (!oled_initialized) {
657 return !oled_active;
658 }
659
660 static const uint8_t PROGMEM display_off[] =
661#ifdef OLED_FADE_OUT
662 {I2C_CMD, FADE_BLINK, ENABLE_FADE | OLED_FADE_OUT_INTERVAL};
663#else
664 {I2C_CMD, DISPLAY_OFF};
665#endif
666
667 if (oled_active) {
668 if (I2C_TRANSMIT_P(display_off) != I2C_STATUS_SUCCESS) {
669 print("oled_off cmd failed\n");
670 return oled_active;
671 }
672 oled_active = false;
673 }
674 return !oled_active;
675}
676
677bool is_oled_on(void) { return oled_active; }
678
679uint8_t oled_set_brightness(uint8_t level) {
680 if (!oled_initialized) {
681 return oled_brightness;
682 }
683
684 uint8_t set_contrast[] = {I2C_CMD, CONTRAST, level};
685 if (oled_brightness != level) {
686 if (I2C_TRANSMIT(set_contrast) != I2C_STATUS_SUCCESS) {
687 print("set_brightness cmd failed\n");
688 return oled_brightness;
689 }
690 oled_brightness = level;
691 }
692 return oled_brightness;
693}
694
695uint8_t oled_get_brightness(void) { return oled_brightness; }
696
697// Set the specific 8 lines rows of the screen to scroll.
698// 0 is the default for start, and 7 for end, which is the entire
699// height of the screen. For 128x32 screens, rows 4-7 are not used.
700void oled_scroll_set_area(uint8_t start_line, uint8_t end_line) {
701 oled_scroll_start = start_line;
702 oled_scroll_end = end_line;
703}
704
705void oled_scroll_set_speed(uint8_t speed) {
706 // Sets the speed for scrolling... does not take effect
707 // until scrolling is either started or restarted
708 // the ssd1306 supports 8 speeds
709 // FrameRate2 speed = 7
710 // FrameRate3 speed = 4
711 // FrameRate4 speed = 5
712 // FrameRate5 speed = 0
713 // FrameRate25 speed = 6
714 // FrameRate64 speed = 1
715 // FrameRate128 speed = 2
716 // FrameRate256 speed = 3
717 // for ease of use these are remaped here to be in order
718 static const uint8_t scroll_remap[8] = {7, 4, 5, 0, 6, 1, 2, 3};
719 oled_scroll_speed = scroll_remap[speed];
720}
721
722bool oled_scroll_right(void) {
723 if (!oled_initialized) {
724 return oled_scrolling;
725 }
726
727 // Dont enable scrolling if we need to update the display
728 // This prevents scrolling of bad data from starting the scroll too early after init
729 if (!oled_dirty && !oled_scrolling) {
730 uint8_t display_scroll_right[] = {I2C_CMD, SCROLL_RIGHT, 0x00, oled_scroll_start, oled_scroll_speed, oled_scroll_end, 0x00, 0xFF, ACTIVATE_SCROLL};
731 if (I2C_TRANSMIT(display_scroll_right) != I2C_STATUS_SUCCESS) {
732 print("oled_scroll_right cmd failed\n");
733 return oled_scrolling;
734 }
735 oled_scrolling = true;
736 }
737 return oled_scrolling;
738}
739
740bool oled_scroll_left(void) {
741 if (!oled_initialized) {
742 return oled_scrolling;
743 }
744
745 // Dont enable scrolling if we need to update the display
746 // This prevents scrolling of bad data from starting the scroll too early after init
747 if (!oled_dirty && !oled_scrolling) {
748 uint8_t display_scroll_left[] = {I2C_CMD, SCROLL_LEFT, 0x00, oled_scroll_start, oled_scroll_speed, oled_scroll_end, 0x00, 0xFF, ACTIVATE_SCROLL};
749 if (I2C_TRANSMIT(display_scroll_left) != I2C_STATUS_SUCCESS) {
750 print("oled_scroll_left cmd failed\n");
751 return oled_scrolling;
752 }
753 oled_scrolling = true;
754 }
755 return oled_scrolling;
756}
757
758bool oled_scroll_off(void) {
759 if (!oled_initialized) {
760 return !oled_scrolling;
761 }
762
763 if (oled_scrolling) {
764 static const uint8_t PROGMEM display_scroll_off[] = {I2C_CMD, DEACTIVATE_SCROLL};
765 if (I2C_TRANSMIT_P(display_scroll_off) != I2C_STATUS_SUCCESS) {
766 print("oled_scroll_off cmd failed\n");
767 return oled_scrolling;
768 }
769 oled_scrolling = false;
770 oled_dirty = OLED_ALL_BLOCKS_MASK;
771 }
772 return !oled_scrolling;
773}
774
775bool is_oled_scrolling(void) { return oled_scrolling; }
776
777bool oled_invert(bool invert) {
778 if (!oled_initialized) {
779 return oled_inverted;
780 }
781
782 if (invert && !oled_inverted) {
783 static const uint8_t PROGMEM display_inverted[] = {I2C_CMD, INVERT_DISPLAY};
784 if (I2C_TRANSMIT_P(display_inverted) != I2C_STATUS_SUCCESS) {
785 print("oled_invert cmd failed\n");
786 return oled_inverted;
787 }
788 oled_inverted = true;
789 } else if (!invert && oled_inverted) {
790 static const uint8_t PROGMEM display_normal[] = {I2C_CMD, NORMAL_DISPLAY};
791 if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) {
792 print("oled_invert cmd failed\n");
793 return oled_inverted;
794 }
795 oled_inverted = false;
796 }
797
798 return oled_inverted;
799}
800
801uint8_t oled_max_chars(void) {
802 if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
803 return OLED_DISPLAY_WIDTH / OLED_FONT_WIDTH;
804 }
805 return OLED_DISPLAY_HEIGHT / OLED_FONT_WIDTH;
806}
807
808uint8_t oled_max_lines(void) {
809 if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
810 return OLED_DISPLAY_HEIGHT / OLED_FONT_HEIGHT;
811 }
812 return OLED_DISPLAY_WIDTH / OLED_FONT_HEIGHT;
813}
814
815void oled_task(void) {
816 if (!oled_initialized) {
817 return;
818 }
819
820#if OLED_UPDATE_INTERVAL > 0
821 if (timer_elapsed(oled_update_timeout) >= OLED_UPDATE_INTERVAL) {
822 oled_update_timeout = timer_read();
823 oled_set_cursor(0, 0);
824 oled_task_kb();
825 }
826#else
827 oled_set_cursor(0, 0);
828 oled_task_kb();
829#endif
830
831#if OLED_SCROLL_TIMEOUT > 0
832 if (oled_dirty && oled_scrolling) {
833 oled_scroll_timeout = timer_read32() + OLED_SCROLL_TIMEOUT;
834 oled_scroll_off();
835 }
836#endif
837
838 // Smart render system, no need to check for dirty
839 oled_render();
840
841 // Display timeout check
842#if OLED_TIMEOUT > 0
843 if (oled_active && timer_expired32(timer_read32(), oled_timeout)) {
844 oled_off();
845 }
846#endif
847
848#if OLED_SCROLL_TIMEOUT > 0
849 if (!oled_scrolling && timer_expired32(timer_read32(), oled_scroll_timeout)) {
850# ifdef OLED_SCROLL_TIMEOUT_RIGHT
851 oled_scroll_right();
852# else
853 oled_scroll_left();
854# endif
855 }
856#endif
857}
858
859__attribute__((weak)) bool oled_task_kb(void) { return oled_task_user(); }
860__attribute__((weak)) bool oled_task_user(void) { return true; }