aboutsummaryrefslogtreecommitdiff
path: root/asp/20_rubikigne.lp
blob: 98768fb5258545e8308921ff1612140cfc0cb5ee (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
%%% RIVISTO 15/12/2016 per GRINGO 4

%% dimensione del cubo
#const e = 2.
%% numero di cubies
#const c = e**3.
%% upperbound mosse
#const t = 10.

%% posizione dei cubetti
cubie(0..c-1).
%% def colori
color(red;blue;green;yellow;orange;white).

time(0..t).

%% le rotazioni sono codificate secondo la terminologia degli angoli di eulero
rotation(yaw;pitch;roll).
side(0;1).
dir(1;-1).

%% Determina la posizione di arrivo di un dato cubetto dopo una rotazione positiva.

reach(yaw,0,0,1). % yaw up
reach(yaw,0,1,2). % yaw up
reach(yaw,0,2,3). % yaw up
reach(yaw,0,3,0). % yaw up

reach(yaw,1,4,5). % yaw down
reach(yaw,1,5,6). % yaw down
reach(yaw,1,6,7). % yaw down
reach(yaw,1,7,4). % yaw down

reach(pitch,0,0,4). % pitch right
reach(pitch,0,4,5). % pitch right
reach(pitch,0,5,1). % pitch right
reach(pitch,0,1,0). % pitch right

reach(pitch,1,3,7). % pitch left
reach(pitch,1,7,6). % pitch left
reach(pitch,1,6,2). % pitch left
reach(pitch,1,2,3). % pitch left

reach(roll,0,0,3). % roll front
reach(roll,0,3,7). % roll front
reach(roll,0,7,4). % roll front
reach(roll,0,4,0). % roll front

reach(roll,1,1,2). % roll back
reach(roll,1,2,6). % roll back
reach(roll,1,6,5). % roll back
reach(roll,1,5,1). % roll back

%% Solo una mossa per instante t, fino a quando non è risolto il cubo.
1 { move(T1,R,S,D) : rotation(R), side(S), dir(D) } 1 :- 
    time(T1), time(T2), not solved(T2), T2 <= T1.
:- time(T1), time(T2), solved(T2), T2 < T1, move(T1,R,S,D).

%% Vieta 3 rotazioni uguali nello stesso senso.
:- move(T,R,S,D), move(T+1,R,S,D), move(T+2,R,S,D),
   rotation(R), side(S), dir(D), time(T), time(T+1), time(T+2).

%% Vieta la rotazione di 180 gradi con mosse negative.
:- move(T,R,S,-1), move(T+1,R,S,-1),
   rotation(R), side(S),  time(T), time(T+1).

%% Elimina sequenze di mosse che formano dei cicli nella sequenza di stati
%% (sembra piuttosto pesante come controllo)
:- equal(T1,T2), time(T1;T2), T1 < T2.
equal(T1,T2) :- not different(T1,T2), time(T1), time(T2), T1 < T2.
different(T1,T2) :- cubie(X), is(T1,X,Col1,_,_),is(T2,X,Col2,_,_), time(T1), time(T2), color(Col1;Col2), Col1 != Col2, T1 < T2.
different(T1,T2) :- cubie(X), is(T1,X,_,Col1,_),is(T2,X,_,Col2,_), time(T1), time(T2), color(Col1;Col2), Col1 != Col2, T1 < T2.
different(T1,T2) :- cubie(X), is(T1,X,_,_,Col1),is(T2,X,_,_,Col2), time(T1), time(T2), color(Col1;Col2), Col1 != Col2, T1 < T2.

%% In alternativa si può usare un più semplice controllo che vieta una seguenza di due mosse, l'una opposta all'altra.
% :- move(T,R,S,D), move(T1,R,S,D1),
%    T1 = T + 1, time(T;T1),
%    dir(D;D1), D = -D1,
%    rotation(R),side(S).

%% Evoluzione dello stato.
is(T+1,C1,Col3,Col2,Col1) :- is(T,C,Col1,Col2,Col3),%
                            move(T,yaw,S,1),reach(yaw,S,C,C1),%
                            time(T),time(T+1), 
                            cubie(C),cubie(C1),
                            color(Col1), color(Col2), color(Col3),
                            side(S).

is(T+1,C1,Col3,Col2,Col1) :- is(T,C,Col1,Col2,Col3),%
                            move(T,yaw,S,-1),reach(yaw,S,C1,C),%
                            time(T),time(T+1),%
                            cubie(C),cubie(C1),
                            color(Col1), color(Col2), color(Col3),
                            side(S).

is(T+1,C1,Col1,Col3,Col2) :- is(T,C,Col1,Col2,Col3),%
                            move(T,pitch,S,1),reach(pitch,S,C,C1),%
                            time(T),time(T+1),%
                            cubie(C),cubie(C1), 
                            color(Col1), color(Col2), color(Col3),
                            side(S).

is(T+1,C1,Col1,Col3,Col2) :- is(T,C,Col1,Col2,Col3),%
                            move(T,pitch,S,-1),reach(pitch,S,C1,C),%
                            time(T),time(T+1),%
                            cubie(C),cubie(C1),
                            color(Col1), color(Col2), color(Col3),
                            side(S).

is(T+1,C1,Col2,Col1,Col3) :- is(T,C,Col1,Col2,Col3),%
                            move(T,roll,S,1),reach(roll,S,C,C1),%
                            time(T),time(T+1),%
                            cubie(C),cubie(C1),color(Col1;Col2;Col3),side(S).

is(T+1,C1,Col2,Col1,Col3) :- is(T,C,Col1,Col2,Col3),%
                            move(T,roll,S,-1),reach(roll,S,C1,C),%
                            time(T),time(T+1),%
                            cubie(C),cubie(C1),
                            color(Col1), color(Col2), color(Col3),
                            side(S).

%% catch all
is(T+1,C,Col1,Col2,Col3) :- is(T,C,Col1,Col2,Col3),%
                           move(T,R,S,_), not reach(R,S,C,_), not reach(R,S,_,C),%
                           time(T),time(T+1),%
                           cubie(C), color(Col1), color(Col2), color(Col3),
                           rotation(R),side(S).

%% configurazione risolta del cubo
solved(N) :- is(N,0,Col4,Col1,Col3), is(N,1,Col4,Col1,Col5), is(N,2,Col6,Col1,Col5), is(N,3,Col6,Col1,Col3),
             is(N,4,Col4,Col2,Col3), is(N,5,Col4,Col2,Col5), is(N,6,Col6,Col2,Col5), is(N,7,Col6,Col2,Col3),
             time(N),faces(Col1,Col2,Col3,Col4,Col5,Col6).
solved(N+1) :- time(N),time(N+1),solved(N).

%% limita il check alle sole configurazioni risolte effettivamente ottenibili.
%% Ad esempio se green e blue sono colori opposti, non esisterà mai una configurazione
%% risolta che li vede vicini (ma senza faces/6 la regola sopra controllerebbe anche quello!)
faces(green,blue,red,white,orange,yellow).
faces(Col1,Col2,Col4,Col5,Col6,Col3) :- faces(Col1,Col2,Col3,Col4,Col5,Col6).
faces(Col2,Col1,Col6,Col5,Col4,Col3) :- faces(Col1,Col2,Col3,Col4,Col5,Col6).
faces(Col3,Col5,Col4,Col1,Col6,Col2) :- faces(Col1,Col2,Col3,Col4,Col5,Col6).

%% chiedo che il cubo sia risolto 
solved :- solved(_).
:- not solved.

%% Predicato per distinguere la configurazione iniziale.
init(C,Col1,Col2,Col3) :- is(0,C,Col1,Col2,Col3),cubie(C),color(Col1;Col2;Col3).

%% Minimizzazione ripetto al numero di mosse.
#minimize { T@1,solved : solved(T), time(T)}.

%% INPUT 1 %%
% is(0,0,red,white,green).
% is(0,1,white,green,orange).
% is(0,2,orange,white,blue).
% is(0,3,green,red,yellow).
% is(0,4,blue,orange,yellow).
% is(0,5,white,red,blue).
% is(0,6,blue,yellow,red).
% is(0,7,yellow,green,orange).

%% INPUT 2 %%
% is(0,0,yellow,green,orange).
% is(0,1,blue,white,orange).
% is(0,2,yellow,orange,blue).
% is(0,3,blue,yellow,red).
% is(0,4,green,orange,white).
% is(0,5,red,blue,white).
% is(0,6,green,red,yellow).
% is(0,7,red,white,green).

%% INPUT 3 %%
is(0,0,orange,yellow,green).
is(0,1,white,green,orange).
is(0,2,orange,white,blue).
is(0,3,red,blue,yellow).
is(0,4,white,blue,red).
is(0,5,blue,yellow,orange).
is(0,6,green,white,red).
is(0,7,yellow,red,green).

#show move/4.
#show solved/1.