diff options
Diffstat (limited to 'lib/lufa/Projects/Webserver/Lib/uip/uip.c')
| -rw-r--r-- | lib/lufa/Projects/Webserver/Lib/uip/uip.c | 1941 |
1 files changed, 0 insertions, 1941 deletions
diff --git a/lib/lufa/Projects/Webserver/Lib/uip/uip.c b/lib/lufa/Projects/Webserver/Lib/uip/uip.c deleted file mode 100644 index fead75775..000000000 --- a/lib/lufa/Projects/Webserver/Lib/uip/uip.c +++ /dev/null | |||
| @@ -1,1941 +0,0 @@ | |||
| 1 | #define DEBUG_PRINTF(...) /*printf(__VA_ARGS__)*/ | ||
| 2 | |||
| 3 | /** | ||
| 4 | * \addtogroup uip | ||
| 5 | * @{ | ||
| 6 | */ | ||
| 7 | |||
| 8 | /** | ||
| 9 | * \file | ||
| 10 | * The uIP TCP/IP stack code. | ||
| 11 | * \author Adam Dunkels <adam@dunkels.com> | ||
| 12 | */ | ||
| 13 | |||
| 14 | /* | ||
| 15 | * Copyright (c) 2001-2003, Adam Dunkels. | ||
| 16 | * All rights reserved. | ||
| 17 | * | ||
| 18 | * Redistribution and use in source and binary forms, with or without | ||
| 19 | * modification, are permitted provided that the following conditions | ||
| 20 | * are met: | ||
| 21 | * 1. Redistributions of source code must retain the above copyright | ||
| 22 | * notice, this list of conditions and the following disclaimer. | ||
| 23 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 24 | * notice, this list of conditions and the following disclaimer in the | ||
| 25 | * documentation and/or other materials provided with the distribution. | ||
| 26 | * 3. The name of the author may not be used to endorse or promote | ||
| 27 | * products derived from this software without specific prior | ||
| 28 | * written permission. | ||
| 29 | * | ||
| 30 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS | ||
| 31 | * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | ||
| 32 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 33 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | ||
| 34 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 35 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE | ||
| 36 | * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | ||
| 37 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | ||
| 38 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | ||
| 39 | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
| 40 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 41 | * | ||
| 42 | * This file is part of the uIP TCP/IP stack. | ||
| 43 | * | ||
| 44 | * $Id: uip.c,v 1.15 2008/10/15 08:08:32 adamdunkels Exp $ | ||
| 45 | * | ||
| 46 | */ | ||
| 47 | |||
| 48 | /* | ||
| 49 | * uIP is a small implementation of the IP, UDP and TCP protocols (as | ||
| 50 | * well as some basic ICMP stuff). The implementation couples the IP, | ||
| 51 | * UDP, TCP and the application layers very tightly. To keep the size | ||
| 52 | * of the compiled code down, this code frequently uses the goto | ||
| 53 | * statement. While it would be possible to break the uip_process() | ||
| 54 | * function into many smaller functions, this would increase the code | ||
| 55 | * size because of the overhead of parameter passing and the fact that | ||
| 56 | * the optimizer would not be as efficient. | ||
| 57 | * | ||
| 58 | * The principle is that we have a small buffer, called the uip_buf, | ||
| 59 | * in which the device driver puts an incoming packet. The TCP/IP | ||
| 60 | * stack parses the headers in the packet, and calls the | ||
| 61 | * application. If the remote host has sent data to the application, | ||
| 62 | * this data is present in the uip_buf and the application read the | ||
| 63 | * data from there. It is up to the application to put this data into | ||
| 64 | * a byte stream if needed. The application will not be fed with data | ||
| 65 | * that is out of sequence. | ||
| 66 | * | ||
| 67 | * If the application whishes to send data to the peer, it should put | ||
| 68 | * its data into the uip_buf. The uip_appdata pointer points to the | ||
| 69 | * first available byte. The TCP/IP stack will calculate the | ||
| 70 | * checksums, and fill in the necessary header fields and finally send | ||
| 71 | * the packet back to the peer. | ||
| 72 | */ | ||
| 73 | |||
| 74 | #include "uip.h" | ||
| 75 | #include "uipopt.h" | ||
| 76 | #include "uip_arp.h" | ||
| 77 | |||
| 78 | #if !UIP_CONF_IPV6 /* If UIP_CONF_IPV6 is defined, we compile the | ||
| 79 | uip6.c file instead of this one. Therefore | ||
| 80 | this #ifndef removes the entire compilation | ||
| 81 | output of the uip.c file */ | ||
| 82 | |||
| 83 | |||
| 84 | #if UIP_CONF_IPV6 | ||
| 85 | #include "net/uip-neighbor.h" | ||
| 86 | #endif /* UIP_CONF_IPV6 */ | ||
| 87 | |||
| 88 | #include <string.h> | ||
| 89 | |||
| 90 | /*---------------------------------------------------------------------------*/ | ||
| 91 | /* Variable definitions. */ | ||
| 92 | |||
| 93 | |||
| 94 | /* The IP address of this host. If it is defined to be fixed (by | ||
| 95 | setting UIP_FIXEDADDR to 1 in uipopt.h), the address is set | ||
| 96 | here. Otherwise, the address */ | ||
| 97 | #if UIP_FIXEDADDR > 0 | ||
| 98 | const uip_ipaddr_t uip_hostaddr = | ||
| 99 | { UIP_IPADDR0, UIP_IPADDR1, UIP_IPADDR2, UIP_IPADDR3 }; | ||
| 100 | const uip_ipaddr_t uip_draddr = | ||
| 101 | { UIP_DRIPADDR0, UIP_DRIPADDR1, UIP_DRIPADDR2, UIP_DRIPADDR3 }; | ||
| 102 | const uip_ipaddr_t uip_netmask = | ||
| 103 | { UIP_NETMASK0, UIP_NETMASK1, UIP_NETMASK2, UIP_NETMASK3 }; | ||
| 104 | #else | ||
| 105 | uip_ipaddr_t uip_hostaddr, uip_draddr, uip_netmask; | ||
| 106 | #endif /* UIP_FIXEDADDR */ | ||
| 107 | |||
| 108 | const uip_ipaddr_t uip_broadcast_addr = | ||
| 109 | #if UIP_CONF_IPV6 | ||
| 110 | { { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 111 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } }; | ||
| 112 | #else /* UIP_CONF_IPV6 */ | ||
| 113 | { { 0xff, 0xff, 0xff, 0xff } }; | ||
| 114 | #endif /* UIP_CONF_IPV6 */ | ||
| 115 | const uip_ipaddr_t uip_all_zeroes_addr = { { 0x0, /* rest is 0 */ } }; | ||
| 116 | |||
| 117 | #if UIP_FIXEDETHADDR | ||
| 118 | const struct uip_eth_addr uip_ethaddr = {{UIP_ETHADDR0, | ||
| 119 | UIP_ETHADDR1, | ||
| 120 | UIP_ETHADDR2, | ||
| 121 | UIP_ETHADDR3, | ||
| 122 | UIP_ETHADDR4, | ||
| 123 | UIP_ETHADDR5}}; | ||
| 124 | #else | ||
| 125 | struct uip_eth_addr uip_ethaddr = {{0,0,0,0,0,0}}; | ||
| 126 | #endif | ||
| 127 | |||
| 128 | #ifndef UIP_CONF_EXTERNAL_BUFFER | ||
| 129 | u8_t uip_buf[UIP_BUFSIZE + 2]; /* The packet buffer that contains | ||
| 130 | incoming packets. */ | ||
| 131 | #endif /* UIP_CONF_EXTERNAL_BUFFER */ | ||
| 132 | |||
| 133 | void *uip_appdata; /* The uip_appdata pointer points to | ||
| 134 | application data. */ | ||
| 135 | void *uip_sappdata; /* The uip_appdata pointer points to | ||
| 136 | the application data which is to | ||
| 137 | be sent. */ | ||
| 138 | #if UIP_URGDATA > 0 | ||
| 139 | void *uip_urgdata; /* The uip_urgdata pointer points to | ||
| 140 | urgent data (out-of-band data), if | ||
| 141 | present. */ | ||
| 142 | u16_t uip_urglen, uip_surglen; | ||
| 143 | #endif /* UIP_URGDATA > 0 */ | ||
| 144 | |||
| 145 | u16_t uip_len, uip_slen; | ||
| 146 | /* The uip_len is either 8 or 16 bits, | ||
| 147 | depending on the maximum packet | ||
| 148 | size. */ | ||
| 149 | |||
| 150 | u8_t uip_flags; /* The uip_flags variable is used for | ||
| 151 | communication between the TCP/IP stack | ||
| 152 | and the application program. */ | ||
| 153 | struct uip_conn *uip_conn; /* uip_conn always points to the current | ||
| 154 | connection. */ | ||
| 155 | |||
| 156 | struct uip_conn uip_conns[UIP_CONNS]; | ||
| 157 | /* The uip_conns array holds all TCP | ||
| 158 | connections. */ | ||
| 159 | u16_t uip_listenports[UIP_LISTENPORTS]; | ||
| 160 | /* The uip_listenports list all currently | ||
| 161 | listening ports. */ | ||
| 162 | #if UIP_UDP | ||
| 163 | struct uip_udp_conn *uip_udp_conn; | ||
| 164 | struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS]; | ||
| 165 | #endif /* UIP_UDP */ | ||
| 166 | |||
| 167 | static u16_t ipid; /* Ths ipid variable is an increasing | ||
| 168 | number that is used for the IP ID | ||
| 169 | field. */ | ||
| 170 | |||
| 171 | void uip_setipid(u16_t id) { ipid = id; } | ||
| 172 | |||
| 173 | static u8_t iss[4]; /* The iss variable is used for the TCP | ||
| 174 | initial sequence number. */ | ||
| 175 | |||
| 176 | #if UIP_ACTIVE_OPEN | ||
| 177 | static u16_t lastport; /* Keeps track of the last port used for | ||
| 178 | a new connection. */ | ||
| 179 | #endif /* UIP_ACTIVE_OPEN */ | ||
| 180 | |||
| 181 | /* Temporary variables. */ | ||
| 182 | u8_t uip_acc32[4]; | ||
| 183 | static u8_t c, opt; | ||
| 184 | static u16_t tmp16; | ||
| 185 | |||
| 186 | /* Structures and definitions. */ | ||
| 187 | #define TCP_FIN 0x01 | ||
| 188 | #define TCP_SYN 0x02 | ||
| 189 | #define TCP_RST 0x04 | ||
| 190 | #define TCP_PSH 0x08 | ||
| 191 | #define TCP_ACK 0x10 | ||
| 192 | #define TCP_URG 0x20 | ||
| 193 | #define TCP_CTL 0x3f | ||
| 194 | |||
| 195 | #define TCP_OPT_END 0 /* End of TCP options list */ | ||
| 196 | #define TCP_OPT_NOOP 1 /* "No-operation" TCP option */ | ||
| 197 | #define TCP_OPT_MSS 2 /* Maximum segment size TCP option */ | ||
| 198 | |||
| 199 | #define TCP_OPT_MSS_LEN 4 /* Length of TCP MSS option. */ | ||
| 200 | |||
| 201 | #define ICMP_ECHO_REPLY 0 | ||
| 202 | #define ICMP_ECHO 8 | ||
| 203 | |||
| 204 | #define ICMP_DEST_UNREACHABLE 3 | ||
| 205 | #define ICMP_PORT_UNREACHABLE 3 | ||
| 206 | |||
| 207 | #define ICMP6_ECHO_REPLY 129 | ||
| 208 | #define ICMP6_ECHO 128 | ||
| 209 | #define ICMP6_NEIGHBOR_SOLICITATION 135 | ||
| 210 | #define ICMP6_NEIGHBOR_ADVERTISEMENT 136 | ||
| 211 | |||
| 212 | #define ICMP6_FLAG_S (1 << 6) | ||
| 213 | |||
| 214 | #define ICMP6_OPTION_SOURCE_LINK_ADDRESS 1 | ||
| 215 | #define ICMP6_OPTION_TARGET_LINK_ADDRESS 2 | ||
| 216 | |||
| 217 | |||
| 218 | /* Macros. */ | ||
| 219 | #define BUF ((struct uip_tcpip_hdr *)&uip_buf[UIP_LLH_LEN]) | ||
| 220 | #define FBUF ((struct uip_tcpip_hdr *)&uip_reassbuf[0]) | ||
| 221 | #define ICMPBUF ((struct uip_icmpip_hdr *)&uip_buf[UIP_LLH_LEN]) | ||
| 222 | #define UDPBUF ((struct uip_udpip_hdr *)&uip_buf[UIP_LLH_LEN]) | ||
| 223 | |||
| 224 | |||
| 225 | #if UIP_STATISTICS == 1 | ||
| 226 | struct uip_stats uip_stat; | ||
| 227 | #define UIP_STAT(s) s | ||
| 228 | #else | ||
| 229 | #define UIP_STAT(s) | ||
| 230 | #endif /* UIP_STATISTICS == 1 */ | ||
| 231 | |||
| 232 | #if UIP_LOGGING == 1 | ||
| 233 | #include <stdio.h> | ||
| 234 | void uip_log(char *msg); | ||
| 235 | #define UIP_LOG(m) uip_log(m) | ||
| 236 | #else | ||
| 237 | #define UIP_LOG(m) | ||
| 238 | #endif /* UIP_LOGGING == 1 */ | ||
| 239 | |||
| 240 | #if ! UIP_ARCH_ADD32 | ||
| 241 | void | ||
| 242 | uip_add32(u8_t *op32, u16_t op16) | ||
| 243 | { | ||
| 244 | uip_acc32[3] = op32[3] + (op16 & 0xff); | ||
| 245 | uip_acc32[2] = op32[2] + (op16 >> 8); | ||
| 246 | uip_acc32[1] = op32[1]; | ||
| 247 | uip_acc32[0] = op32[0]; | ||
| 248 | |||
| 249 | if(uip_acc32[2] < (op16 >> 8)) { | ||
| 250 | ++uip_acc32[1]; | ||
| 251 | if(uip_acc32[1] == 0) { | ||
| 252 | ++uip_acc32[0]; | ||
| 253 | } | ||
| 254 | } | ||
| 255 | |||
| 256 | |||
| 257 | if(uip_acc32[3] < (op16 & 0xff)) { | ||
| 258 | ++uip_acc32[2]; | ||
| 259 | if(uip_acc32[2] == 0) { | ||
| 260 | ++uip_acc32[1]; | ||
| 261 | if(uip_acc32[1] == 0) { | ||
| 262 | ++uip_acc32[0]; | ||
| 263 | } | ||
| 264 | } | ||
| 265 | } | ||
| 266 | } | ||
| 267 | |||
| 268 | #endif /* UIP_ARCH_ADD32 */ | ||
| 269 | |||
| 270 | #if ! UIP_ARCH_CHKSUM | ||
| 271 | /*---------------------------------------------------------------------------*/ | ||
| 272 | static u16_t | ||
| 273 | chksum(u16_t sum, const u8_t *data, u16_t len) | ||
| 274 | { | ||
| 275 | u16_t t; | ||
| 276 | const u8_t *dataptr; | ||
| 277 | const u8_t *last_byte; | ||
| 278 | |||
| 279 | dataptr = data; | ||
| 280 | last_byte = data + len - 1; | ||
| 281 | |||
| 282 | while(dataptr < last_byte) { /* At least two more bytes */ | ||
| 283 | t = (dataptr[0] << 8) + dataptr[1]; | ||
| 284 | sum += t; | ||
| 285 | if(sum < t) { | ||
| 286 | sum++; /* carry */ | ||
| 287 | } | ||
| 288 | dataptr += 2; | ||
| 289 | } | ||
| 290 | |||
| 291 | if(dataptr == last_byte) { | ||
| 292 | t = (dataptr[0] << 8) + 0; | ||
| 293 | sum += t; | ||
| 294 | if(sum < t) { | ||
| 295 | sum++; /* carry */ | ||
| 296 | } | ||
| 297 | } | ||
| 298 | |||
| 299 | /* Return sum in host byte order. */ | ||
| 300 | return sum; | ||
| 301 | } | ||
| 302 | /*---------------------------------------------------------------------------*/ | ||
| 303 | u16_t | ||
| 304 | uip_chksum(u16_t *data, u16_t len) | ||
| 305 | { | ||
| 306 | return htons(chksum(0, (u8_t *)data, len)); | ||
| 307 | } | ||
| 308 | /*---------------------------------------------------------------------------*/ | ||
| 309 | #ifndef UIP_ARCH_IPCHKSUM | ||
| 310 | u16_t | ||
| 311 | uip_ipchksum(void) | ||
| 312 | { | ||
| 313 | u16_t sum; | ||
| 314 | |||
| 315 | sum = chksum(0, &uip_buf[UIP_LLH_LEN], UIP_IPH_LEN); | ||
| 316 | DEBUG_PRINTF("uip_ipchksum: sum 0x%04x\n", sum); | ||
| 317 | return (sum == 0) ? 0xffff : htons(sum); | ||
| 318 | } | ||
| 319 | #endif | ||
| 320 | /*---------------------------------------------------------------------------*/ | ||
| 321 | static u16_t | ||
| 322 | upper_layer_chksum(u8_t proto) | ||
| 323 | { | ||
| 324 | u16_t upper_layer_len; | ||
| 325 | u16_t sum; | ||
| 326 | |||
| 327 | #if UIP_CONF_IPV6 | ||
| 328 | upper_layer_len = (((u16_t)(BUF->len[0]) << 8) + BUF->len[1]); | ||
| 329 | #else /* UIP_CONF_IPV6 */ | ||
| 330 | upper_layer_len = (((u16_t)(BUF->len[0]) << 8) + BUF->len[1]) - UIP_IPH_LEN; | ||
| 331 | #endif /* UIP_CONF_IPV6 */ | ||
| 332 | |||
| 333 | /* First sum pseudo-header. */ | ||
| 334 | |||
| 335 | /* IP protocol and length fields. This addition cannot carry. */ | ||
| 336 | sum = upper_layer_len + proto; | ||
| 337 | /* Sum IP source and destination addresses. */ | ||
| 338 | sum = chksum(sum, (u8_t *)&BUF->srcipaddr, 2 * sizeof(uip_ipaddr_t)); | ||
| 339 | |||
| 340 | /* Sum TCP header and data. */ | ||
| 341 | sum = chksum(sum, &uip_buf[UIP_IPH_LEN + UIP_LLH_LEN], | ||
| 342 | upper_layer_len); | ||
| 343 | |||
| 344 | return (sum == 0) ? 0xffff : htons(sum); | ||
| 345 | } | ||
| 346 | /*---------------------------------------------------------------------------*/ | ||
| 347 | #if UIP_CONF_IPV6 | ||
| 348 | u16_t | ||
| 349 | uip_icmp6chksum(void) | ||
| 350 | { | ||
| 351 | return upper_layer_chksum(UIP_PROTO_ICMP6); | ||
| 352 | |||
| 353 | } | ||
| 354 | #endif /* UIP_CONF_IPV6 */ | ||
| 355 | /*---------------------------------------------------------------------------*/ | ||
| 356 | u16_t | ||
| 357 | uip_tcpchksum(void) | ||
| 358 | { | ||
| 359 | return upper_layer_chksum(UIP_PROTO_TCP); | ||
| 360 | } | ||
| 361 | /*---------------------------------------------------------------------------*/ | ||
| 362 | #if UIP_UDP_CHECKSUMS | ||
| 363 | u16_t | ||
| 364 | uip_udpchksum(void) | ||
| 365 | { | ||
| 366 | return upper_layer_chksum(UIP_PROTO_UDP); | ||
| 367 | } | ||
| 368 | #endif /* UIP_UDP_CHECKSUMS */ | ||
| 369 | #endif /* UIP_ARCH_CHKSUM */ | ||
| 370 | /*---------------------------------------------------------------------------*/ | ||
| 371 | void | ||
| 372 | uip_init(void) | ||
| 373 | { | ||
| 374 | for(c = 0; c < UIP_LISTENPORTS; ++c) { | ||
| 375 | uip_listenports[c] = 0; | ||
| 376 | } | ||
| 377 | for(c = 0; c < UIP_CONNS; ++c) { | ||
| 378 | uip_conns[c].tcpstateflags = UIP_CLOSED; | ||
| 379 | } | ||
| 380 | #if UIP_ACTIVE_OPEN | ||
| 381 | lastport = 1024; | ||
| 382 | #endif /* UIP_ACTIVE_OPEN */ | ||
| 383 | |||
| 384 | #if UIP_UDP | ||
| 385 | for(c = 0; c < UIP_UDP_CONNS; ++c) { | ||
| 386 | uip_udp_conns[c].lport = 0; | ||
| 387 | } | ||
| 388 | #endif /* UIP_UDP */ | ||
| 389 | |||
| 390 | |||
| 391 | /* IPv4 initialization. */ | ||
| 392 | #if UIP_FIXEDADDR == 0 | ||
| 393 | /* uip_hostaddr[0] = uip_hostaddr[1] = 0;*/ | ||
| 394 | #endif /* UIP_FIXEDADDR */ | ||
| 395 | |||
| 396 | } | ||
| 397 | /*---------------------------------------------------------------------------*/ | ||
| 398 | #if UIP_ACTIVE_OPEN | ||
| 399 | struct uip_conn * | ||
| 400 | uip_connect(uip_ipaddr_t *ripaddr, u16_t rport) | ||
| 401 | { | ||
| 402 | register struct uip_conn *conn, *cconn; | ||
| 403 | |||
| 404 | /* Find an unused local port. */ | ||
| 405 | again: | ||
| 406 | ++lastport; | ||
| 407 | |||
| 408 | if(lastport >= 32000) { | ||
| 409 | lastport = 4096; | ||
| 410 | } | ||
| 411 | |||
| 412 | /* Check if this port is already in use, and if so try to find | ||
| 413 | another one. */ | ||
| 414 | for(c = 0; c < UIP_CONNS; ++c) { | ||
| 415 | conn = &uip_conns[c]; | ||
| 416 | if(conn->tcpstateflags != UIP_CLOSED && | ||
| 417 | conn->lport == htons(lastport)) { | ||
| 418 | goto again; | ||
| 419 | } | ||
| 420 | } | ||
| 421 | |||
| 422 | conn = 0; | ||
| 423 | for(c = 0; c < UIP_CONNS; ++c) { | ||
| 424 | cconn = &uip_conns[c]; | ||
| 425 | if(cconn->tcpstateflags == UIP_CLOSED) { | ||
| 426 | conn = cconn; | ||
| 427 | break; | ||
| 428 | } | ||
| 429 | if(cconn->tcpstateflags == UIP_TIME_WAIT) { | ||
| 430 | if(conn == 0 || | ||
| 431 | cconn->timer > conn->timer) { | ||
| 432 | conn = cconn; | ||
| 433 | } | ||
| 434 | } | ||
| 435 | } | ||
| 436 | |||
| 437 | if(conn == 0) { | ||
| 438 | return 0; | ||
| 439 | } | ||
| 440 | |||
| 441 | conn->tcpstateflags = UIP_SYN_SENT; | ||
| 442 | |||
| 443 | conn->snd_nxt[0] = iss[0]; | ||
| 444 | conn->snd_nxt[1] = iss[1]; | ||
| 445 | conn->snd_nxt[2] = iss[2]; | ||
| 446 | conn->snd_nxt[3] = iss[3]; | ||
| 447 | |||
| 448 | conn->initialmss = conn->mss = UIP_TCP_MSS; | ||
| 449 | |||
| 450 | conn->len = 1; /* TCP length of the SYN is one. */ | ||
| 451 | conn->nrtx = 0; | ||
| 452 | conn->timer = 1; /* Send the SYN next time around. */ | ||
| 453 | conn->rto = UIP_RTO; | ||
| 454 | conn->sa = 0; | ||
| 455 | conn->sv = 16; /* Initial value of the RTT variance. */ | ||
| 456 | conn->lport = htons(lastport); | ||
| 457 | conn->rport = rport; | ||
| 458 | uip_ipaddr_copy(&conn->ripaddr, ripaddr); | ||
| 459 | |||
| 460 | return conn; | ||
| 461 | } | ||
| 462 | #endif /* UIP_ACTIVE_OPEN */ | ||
| 463 | /*---------------------------------------------------------------------------*/ | ||
| 464 | #if UIP_UDP | ||
| 465 | struct uip_udp_conn * | ||
| 466 | uip_udp_new(const uip_ipaddr_t *ripaddr, u16_t rport) | ||
| 467 | { | ||
| 468 | register struct uip_udp_conn *conn; | ||
| 469 | |||
| 470 | /* Find an unused local port. */ | ||
| 471 | again: | ||
| 472 | ++lastport; | ||
| 473 | |||
| 474 | if(lastport >= 32000) { | ||
| 475 | lastport = 4096; | ||
| 476 | } | ||
| 477 | |||
| 478 | for(c = 0; c < UIP_UDP_CONNS; ++c) { | ||
| 479 | if(uip_udp_conns[c].lport == htons(lastport)) { | ||
| 480 | goto again; | ||
| 481 | } | ||
| 482 | } | ||
| 483 | |||
| 484 | |||
| 485 | conn = 0; | ||
| 486 | for(c = 0; c < UIP_UDP_CONNS; ++c) { | ||
| 487 | if(uip_udp_conns[c].lport == 0) { | ||
| 488 | conn = &uip_udp_conns[c]; | ||
| 489 | break; | ||
| 490 | } | ||
| 491 | } | ||
| 492 | |||
| 493 | if(conn == 0) { | ||
| 494 | return 0; | ||
| 495 | } | ||
| 496 | |||
| 497 | conn->lport = HTONS(lastport); | ||
| 498 | conn->rport = rport; | ||
| 499 | if(ripaddr == NULL) { | ||
| 500 | memset(&conn->ripaddr, 0, sizeof(uip_ipaddr_t)); | ||
| 501 | } else { | ||
| 502 | uip_ipaddr_copy(&conn->ripaddr, ripaddr); | ||
| 503 | } | ||
| 504 | conn->ttl = UIP_TTL; | ||
| 505 | |||
| 506 | return conn; | ||
| 507 | } | ||
| 508 | #endif /* UIP_UDP */ | ||
| 509 | /*---------------------------------------------------------------------------*/ | ||
| 510 | void | ||
| 511 | uip_unlisten(u16_t port) | ||
| 512 | { | ||
| 513 | for(c = 0; c < UIP_LISTENPORTS; ++c) { | ||
| 514 | if(uip_listenports[c] == port) { | ||
| 515 | uip_listenports[c] = 0; | ||
| 516 | return; | ||
| 517 | } | ||
| 518 | } | ||
| 519 | } | ||
| 520 | /*---------------------------------------------------------------------------*/ | ||
| 521 | void | ||
| 522 | uip_listen(u16_t port) | ||
| 523 | { | ||
| 524 | for(c = 0; c < UIP_LISTENPORTS; ++c) { | ||
| 525 | if(uip_listenports[c] == 0) { | ||
| 526 | uip_listenports[c] = port; | ||
| 527 | return; | ||
| 528 | } | ||
| 529 | } | ||
| 530 | } | ||
| 531 | /*---------------------------------------------------------------------------*/ | ||
| 532 | /* XXX: IP fragment reassembly: not well-tested. */ | ||
| 533 | |||
| 534 | #if UIP_REASSEMBLY && !UIP_CONF_IPV6 | ||
| 535 | #define UIP_REASS_BUFSIZE (UIP_BUFSIZE - UIP_LLH_LEN) | ||
| 536 | static u8_t uip_reassbuf[UIP_REASS_BUFSIZE]; | ||
| 537 | static u8_t uip_reassbitmap[UIP_REASS_BUFSIZE / (8 * 8)]; | ||
| 538 | static const u8_t bitmap_bits[8] = {0xff, 0x7f, 0x3f, 0x1f, | ||
| 539 | 0x0f, 0x07, 0x03, 0x01}; | ||
| 540 | static u16_t uip_reasslen; | ||
| 541 | static u8_t uip_reassflags; | ||
| 542 | #define UIP_REASS_FLAG_LASTFRAG 0x01 | ||
| 543 | static u8_t uip_reasstmr; | ||
| 544 | |||
| 545 | #define IP_MF 0x20 | ||
| 546 | |||
| 547 | static u8_t | ||
| 548 | uip_reass(void) | ||
| 549 | { | ||
| 550 | u16_t offset, len; | ||
| 551 | u16_t i; | ||
| 552 | |||
| 553 | /* If ip_reasstmr is zero, no packet is present in the buffer, so we | ||
| 554 | write the IP header of the fragment into the reassembly | ||
| 555 | buffer. The timer is updated with the maximum age. */ | ||
| 556 | if(uip_reasstmr == 0) { | ||
| 557 | memcpy(uip_reassbuf, &BUF->vhl, UIP_IPH_LEN); | ||
| 558 | uip_reasstmr = UIP_REASS_MAXAGE; | ||
| 559 | uip_reassflags = 0; | ||
| 560 | /* Clear the bitmap. */ | ||
| 561 | memset(uip_reassbitmap, 0, sizeof(uip_reassbitmap)); | ||
| 562 | } | ||
| 563 | |||
| 564 | /* Check if the incoming fragment matches the one currently present | ||
| 565 | in the reasembly buffer. If so, we proceed with copying the | ||
| 566 | fragment into the buffer. */ | ||
| 567 | if(BUF->srcipaddr[0] == FBUF->srcipaddr[0] && | ||
| 568 | BUF->srcipaddr[1] == FBUF->srcipaddr[1] && | ||
| 569 | BUF->destipaddr[0] == FBUF->destipaddr[0] && | ||
| 570 | BUF->destipaddr[1] == FBUF->destipaddr[1] && | ||
| 571 | BUF->ipid[0] == FBUF->ipid[0] && | ||
| 572 | BUF->ipid[1] == FBUF->ipid[1]) { | ||
| 573 | |||
| 574 | len = (BUF->len[0] << 8) + BUF->len[1] - (BUF->vhl & 0x0f) * 4; | ||
| 575 | offset = (((BUF->ipoffset[0] & 0x3f) << 8) + BUF->ipoffset[1]) * 8; | ||
| 576 | |||
| 577 | /* If the offset or the offset + fragment length overflows the | ||
| 578 | reassembly buffer, we discard the entire packet. */ | ||
| 579 | if(offset > UIP_REASS_BUFSIZE || | ||
| 580 | offset + len > UIP_REASS_BUFSIZE) { | ||
| 581 | uip_reasstmr = 0; | ||
| 582 | goto nullreturn; | ||
| 583 | } | ||
| 584 | |||
| 585 | /* Copy the fragment into the reassembly buffer, at the right | ||
| 586 | offset. */ | ||
| 587 | memcpy(&uip_reassbuf[UIP_IPH_LEN + offset], | ||
| 588 | (char *)BUF + (int)((BUF->vhl & 0x0f) * 4), | ||
| 589 | len); | ||
| 590 | |||
| 591 | /* Update the bitmap. */ | ||
| 592 | if(offset / (8 * 8) == (offset + len) / (8 * 8)) { | ||
| 593 | /* If the two endpoints are in the same byte, we only update | ||
| 594 | that byte. */ | ||
| 595 | |||
| 596 | uip_reassbitmap[offset / (8 * 8)] |= | ||
| 597 | bitmap_bits[(offset / 8 ) & 7] & | ||
| 598 | ~bitmap_bits[((offset + len) / 8 ) & 7]; | ||
| 599 | } else { | ||
| 600 | /* If the two endpoints are in different bytes, we update the | ||
| 601 | bytes in the endpoints and fill the stuff in-between with | ||
| 602 | 0xff. */ | ||
| 603 | uip_reassbitmap[offset / (8 * 8)] |= | ||
| 604 | bitmap_bits[(offset / 8 ) & 7]; | ||
| 605 | for(i = 1 + offset / (8 * 8); i < (offset + len) / (8 * 8); ++i) { | ||
| 606 | uip_reassbitmap[i] = 0xff; | ||
| 607 | } | ||
| 608 | uip_reassbitmap[(offset + len) / (8 * 8)] |= | ||
| 609 | ~bitmap_bits[((offset + len) / 8 ) & 7]; | ||
| 610 | } | ||
| 611 | |||
| 612 | /* If this fragment has the More Fragments flag set to zero, we | ||
| 613 | know that this is the last fragment, so we can calculate the | ||
| 614 | size of the entire packet. We also set the | ||
| 615 | IP_REASS_FLAG_LASTFRAG flag to indicate that we have received | ||
| 616 | the final fragment. */ | ||
| 617 | |||
| 618 | if((BUF->ipoffset[0] & IP_MF) == 0) { | ||
| 619 | uip_reassflags |= UIP_REASS_FLAG_LASTFRAG; | ||
| 620 | uip_reasslen = offset + len; | ||
| 621 | } | ||
| 622 | |||
| 623 | /* Finally, we check if we have a full packet in the buffer. We do | ||
| 624 | this by checking if we have the last fragment and if all bits | ||
| 625 | in the bitmap are set. */ | ||
| 626 | if(uip_reassflags & UIP_REASS_FLAG_LASTFRAG) { | ||
| 627 | /* Check all bytes up to and including all but the last byte in | ||
| 628 | the bitmap. */ | ||
| 629 | for(i = 0; i < uip_reasslen / (8 * 8) - 1; ++i) { | ||
| 630 | if(uip_reassbitmap[i] != 0xff) { | ||
| 631 | goto nullreturn; | ||
| 632 | } | ||
| 633 | } | ||
| 634 | /* Check the last byte in the bitmap. It should contain just the | ||
| 635 | right amount of bits. */ | ||
| 636 | if(uip_reassbitmap[uip_reasslen / (8 * 8)] != | ||
| 637 | (u8_t)~bitmap_bits[uip_reasslen / 8 & 7]) { | ||
| 638 | goto nullreturn; | ||
| 639 | } | ||
| 640 | |||
| 641 | /* If we have come this far, we have a full packet in the | ||
| 642 | buffer, so we allocate a pbuf and copy the packet into it. We | ||
| 643 | also reset the timer. */ | ||
| 644 | uip_reasstmr = 0; | ||
| 645 | memcpy(BUF, FBUF, uip_reasslen); | ||
| 646 | |||
| 647 | /* Pretend to be a "normal" (i.e., not fragmented) IP packet | ||
| 648 | from now on. */ | ||
| 649 | BUF->ipoffset[0] = BUF->ipoffset[1] = 0; | ||
| 650 | BUF->len[0] = uip_reasslen >> 8; | ||
| 651 | BUF->len[1] = uip_reasslen & 0xff; | ||
| 652 | BUF->ipchksum = 0; | ||
| 653 | BUF->ipchksum = ~(uip_ipchksum()); | ||
| 654 | |||
| 655 | return uip_reasslen; | ||
| 656 | } | ||
| 657 | } | ||
| 658 | |||
| 659 | nullreturn: | ||
| 660 | return 0; | ||
| 661 | } | ||
| 662 | #endif /* UIP_REASSEMBLY */ | ||
| 663 | /*---------------------------------------------------------------------------*/ | ||
| 664 | static void | ||
| 665 | uip_add_rcv_nxt(u16_t n) | ||
| 666 | { | ||
| 667 | uip_add32(uip_conn->rcv_nxt, n); | ||
| 668 | uip_conn->rcv_nxt[0] = uip_acc32[0]; | ||
| 669 | uip_conn->rcv_nxt[1] = uip_acc32[1]; | ||
| 670 | uip_conn->rcv_nxt[2] = uip_acc32[2]; | ||
| 671 | uip_conn->rcv_nxt[3] = uip_acc32[3]; | ||
| 672 | } | ||
| 673 | /*---------------------------------------------------------------------------*/ | ||
| 674 | void | ||
| 675 | uip_process(u8_t flag) | ||
| 676 | { | ||
| 677 | register struct uip_conn *uip_connr = uip_conn; | ||
| 678 | |||
| 679 | #if UIP_UDP | ||
| 680 | if(flag == UIP_UDP_SEND_CONN) { | ||
| 681 | goto udp_send; | ||
| 682 | } | ||
| 683 | #endif /* UIP_UDP */ | ||
| 684 | |||
| 685 | uip_sappdata = uip_appdata = &uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN]; | ||
| 686 | |||
| 687 | /* Check if we were invoked because of a poll request for a | ||
| 688 | particular connection. */ | ||
| 689 | if(flag == UIP_POLL_REQUEST) { | ||
| 690 | if((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED && | ||
| 691 | !uip_outstanding(uip_connr)) { | ||
| 692 | uip_len = uip_slen = 0; | ||
| 693 | uip_flags = UIP_POLL; | ||
| 694 | UIP_APPCALL(); | ||
| 695 | goto appsend; | ||
| 696 | } | ||
| 697 | goto drop; | ||
| 698 | |||
| 699 | /* Check if we were invoked because of the periodic timer firing. */ | ||
| 700 | } else if(flag == UIP_TIMER) { | ||
| 701 | #if UIP_REASSEMBLY | ||
| 702 | if(uip_reasstmr != 0) { | ||
| 703 | --uip_reasstmr; | ||
| 704 | } | ||
| 705 | #endif /* UIP_REASSEMBLY */ | ||
| 706 | /* Increase the initial sequence number. */ | ||
| 707 | if(++iss[3] == 0) { | ||
| 708 | if(++iss[2] == 0) { | ||
| 709 | if(++iss[1] == 0) { | ||
| 710 | ++iss[0]; | ||
| 711 | } | ||
| 712 | } | ||
| 713 | } | ||
| 714 | |||
| 715 | /* Reset the length variables. */ | ||
| 716 | uip_len = 0; | ||
| 717 | uip_slen = 0; | ||
| 718 | |||
| 719 | /* Check if the connection is in a state in which we simply wait | ||
| 720 | for the connection to time out. If so, we increase the | ||
| 721 | connection's timer and remove the connection if it times | ||
| 722 | out. */ | ||
| 723 | if(uip_connr->tcpstateflags == UIP_TIME_WAIT || | ||
| 724 | uip_connr->tcpstateflags == UIP_FIN_WAIT_2) { | ||
| 725 | ++(uip_connr->timer); | ||
| 726 | if(uip_connr->timer == UIP_TIME_WAIT_TIMEOUT) { | ||
| 727 | uip_connr->tcpstateflags = UIP_CLOSED; | ||
| 728 | } | ||
| 729 | } else if(uip_connr->tcpstateflags != UIP_CLOSED) { | ||
| 730 | /* If the connection has outstanding data, we increase the | ||
| 731 | connection's timer and see if it has reached the RTO value | ||
| 732 | in which case we retransmit. */ | ||
| 733 | if(uip_outstanding(uip_connr)) { | ||
| 734 | if(uip_connr->timer-- == 0) { | ||
| 735 | if(uip_connr->nrtx == UIP_MAXRTX || | ||
| 736 | ((uip_connr->tcpstateflags == UIP_SYN_SENT || | ||
| 737 | uip_connr->tcpstateflags == UIP_SYN_RCVD) && | ||
| 738 | uip_connr->nrtx == UIP_MAXSYNRTX)) { | ||
| 739 | uip_connr->tcpstateflags = UIP_CLOSED; | ||
| 740 | |||
| 741 | /* We call UIP_APPCALL() with uip_flags set to | ||
| 742 | UIP_TIMEDOUT to inform the application that the | ||
| 743 | connection has timed out. */ | ||
| 744 | uip_flags = UIP_TIMEDOUT; | ||
| 745 | UIP_APPCALL(); | ||
| 746 | |||
| 747 | /* We also send a reset packet to the remote host. */ | ||
| 748 | BUF->flags = TCP_RST | TCP_ACK; | ||
| 749 | goto tcp_send_nodata; | ||
| 750 | } | ||
| 751 | |||
| 752 | /* Exponential back-off. */ | ||
| 753 | uip_connr->timer = UIP_RTO << (uip_connr->nrtx > 4? | ||
| 754 | 4: | ||
| 755 | uip_connr->nrtx); | ||
| 756 | ++(uip_connr->nrtx); | ||
| 757 | |||
| 758 | /* Ok, so we need to retransmit. We do this differently | ||
| 759 | depending on which state we are in. In ESTABLISHED, we | ||
| 760 | call upon the application so that it may prepare the | ||
| 761 | data for the retransmit. In SYN_RCVD, we resend the | ||
| 762 | SYNACK that we sent earlier and in LAST_ACK we have to | ||
| 763 | retransmit our FINACK. */ | ||
| 764 | UIP_STAT(++uip_stat.tcp.rexmit); | ||
| 765 | switch(uip_connr->tcpstateflags & UIP_TS_MASK) { | ||
| 766 | case UIP_SYN_RCVD: | ||
| 767 | /* In the SYN_RCVD state, we should retransmit our | ||
| 768 | SYNACK. */ | ||
| 769 | goto tcp_send_synack; | ||
| 770 | |||
| 771 | #if UIP_ACTIVE_OPEN | ||
| 772 | case UIP_SYN_SENT: | ||
| 773 | /* In the SYN_SENT state, we retransmit out SYN. */ | ||
| 774 | BUF->flags = 0; | ||
| 775 | goto tcp_send_syn; | ||
| 776 | #endif /* UIP_ACTIVE_OPEN */ | ||
| 777 | |||
| 778 | case UIP_ESTABLISHED: | ||
| 779 | /* In the ESTABLISHED state, we call upon the application | ||
| 780 | to do the actual retransmit after which we jump into | ||
| 781 | the code for sending out the packet (the apprexmit | ||
| 782 | label). */ | ||
| 783 | uip_flags = UIP_REXMIT; | ||
| 784 | UIP_APPCALL(); | ||
| 785 | goto apprexmit; | ||
| 786 | |||
| 787 | case UIP_FIN_WAIT_1: | ||
| 788 | case UIP_CLOSING: | ||
| 789 | case UIP_LAST_ACK: | ||
| 790 | /* In all these states we should retransmit a FINACK. */ | ||
| 791 | goto tcp_send_finack; | ||
| 792 | |||
| 793 | } | ||
| 794 | } | ||
| 795 | } else if((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED) { | ||
| 796 | /* If there was no need for a retransmission, we poll the | ||
| 797 | application for new data. */ | ||
| 798 | uip_len = uip_slen = 0; | ||
| 799 | uip_flags = UIP_POLL; | ||
| 800 | UIP_APPCALL(); | ||
| 801 | goto appsend; | ||
| 802 | } | ||
| 803 | } | ||
| 804 | goto drop; | ||
| 805 | } | ||
| 806 | #if UIP_UDP | ||
| 807 | if(flag == UIP_UDP_TIMER) { | ||
| 808 | if(uip_udp_conn->lport != 0) { | ||
| 809 | uip_conn = NULL; | ||
| 810 | uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN]; | ||
| 811 | uip_len = uip_slen = 0; | ||
| 812 | uip_flags = UIP_POLL; | ||
| 813 | UIP_UDP_APPCALL(); | ||
| 814 | goto udp_send; | ||
| 815 | } else { | ||
| 816 | goto drop; | ||
| 817 | } | ||
| 818 | } | ||
| 819 | #endif | ||
| 820 | |||
| 821 | /* This is where the input processing starts. */ | ||
| 822 | UIP_STAT(++uip_stat.ip.recv); | ||
| 823 | |||
| 824 | /* Start of IP input header processing code. */ | ||
| 825 | |||
| 826 | #if UIP_CONF_IPV6 | ||
| 827 | /* Check validity of the IP header. */ | ||
| 828 | if((BUF->vtc & 0xf0) != 0x60) { /* IP version and header length. */ | ||
| 829 | UIP_STAT(++uip_stat.ip.drop); | ||
| 830 | UIP_STAT(++uip_stat.ip.vhlerr); | ||
| 831 | UIP_LOG("ipv6: invalid version."); | ||
| 832 | goto drop; | ||
| 833 | } | ||
| 834 | #else /* UIP_CONF_IPV6 */ | ||
| 835 | /* Check validity of the IP header. */ | ||
| 836 | if(BUF->vhl != 0x45) { /* IP version and header length. */ | ||
| 837 | UIP_STAT(++uip_stat.ip.drop); | ||
| 838 | UIP_STAT(++uip_stat.ip.vhlerr); | ||
| 839 | UIP_LOG("ip: invalid version or header length."); | ||
| 840 | goto drop; | ||
| 841 | } | ||
| 842 | #endif /* UIP_CONF_IPV6 */ | ||
| 843 | |||
| 844 | /* Check the size of the packet. If the size reported to us in | ||
| 845 | uip_len is smaller the size reported in the IP header, we assume | ||
| 846 | that the packet has been corrupted in transit. If the size of | ||
| 847 | uip_len is larger than the size reported in the IP packet header, | ||
| 848 | the packet has been padded and we set uip_len to the correct | ||
| 849 | value.. */ | ||
| 850 | |||
| 851 | if((BUF->len[0] << 8) + BUF->len[1] <= uip_len) { | ||
| 852 | uip_len = (BUF->len[0] << 8) + BUF->len[1]; | ||
| 853 | #if UIP_CONF_IPV6 | ||
| 854 | uip_len += 40; /* The length reported in the IPv6 header is the | ||
| 855 | length of the payload that follows the | ||
| 856 | header. However, uIP uses the uip_len variable | ||
| 857 | for holding the size of the entire packet, | ||
| 858 | including the IP header. For IPv4 this is not a | ||
| 859 | problem as the length field in the IPv4 header | ||
| 860 | contains the length of the entire packet. But | ||
| 861 | for IPv6 we need to add the size of the IPv6 | ||
| 862 | header (40 bytes). */ | ||
| 863 | #endif /* UIP_CONF_IPV6 */ | ||
| 864 | } else { | ||
| 865 | UIP_LOG("ip: packet shorter than reported in IP header."); | ||
| 866 | goto drop; | ||
| 867 | } | ||
| 868 | |||
| 869 | #if !UIP_CONF_IPV6 | ||
| 870 | /* Check the fragment flag. */ | ||
| 871 | if((BUF->ipoffset[0] & 0x3f) != 0 || | ||
| 872 | BUF->ipoffset[1] != 0) { | ||
| 873 | #if UIP_REASSEMBLY | ||
| 874 | uip_len = uip_reass(); | ||
| 875 | if(uip_len == 0) { | ||
| 876 | goto drop; | ||
| 877 | } | ||
| 878 | #else /* UIP_REASSEMBLY */ | ||
| 879 | UIP_STAT(++uip_stat.ip.drop); | ||
| 880 | UIP_STAT(++uip_stat.ip.fragerr); | ||
| 881 | UIP_LOG("ip: fragment dropped."); | ||
| 882 | goto drop; | ||
| 883 | #endif /* UIP_REASSEMBLY */ | ||
| 884 | } | ||
| 885 | #endif /* UIP_CONF_IPV6 */ | ||
| 886 | |||
| 887 | if(uip_ipaddr_cmp(&uip_hostaddr, &uip_all_zeroes_addr)) { | ||
| 888 | /* If we are configured to use ping IP address configuration and | ||
| 889 | hasn't been assigned an IP address yet, we accept all ICMP | ||
| 890 | packets. */ | ||
| 891 | #if UIP_PINGADDRCONF && !UIP_CONF_IPV6 | ||
| 892 | if(BUF->proto == UIP_PROTO_ICMP) { | ||
| 893 | UIP_LOG("ip: possible ping config packet received."); | ||
| 894 | goto icmp_input; | ||
| 895 | } else { | ||
| 896 | UIP_LOG("ip: packet dropped since no address assigned."); | ||
| 897 | goto drop; | ||
| 898 | } | ||
| 899 | #endif /* UIP_PINGADDRCONF */ | ||
| 900 | |||
| 901 | } else { | ||
| 902 | /* If IP broadcast support is configured, we check for a broadcast | ||
| 903 | UDP packet, which may be destined to us. */ | ||
| 904 | #if UIP_BROADCAST | ||
| 905 | DEBUG_PRINTF("UDP IP checksum 0x%04x\n", uip_ipchksum()); | ||
| 906 | if(BUF->proto == UIP_PROTO_UDP && | ||
| 907 | uip_ipaddr_cmp(&BUF->destipaddr, &uip_broadcast_addr)) | ||
| 908 | { | ||
| 909 | if (uip_ipaddr_cmp(&BUF->srcipaddr, &uip_all_zeroes_addr)) | ||
| 910 | uip_ipaddr_copy(&BUF->srcipaddr, &uip_broadcast_addr); | ||
| 911 | |||
| 912 | goto udp_input; | ||
| 913 | } | ||
| 914 | #endif /* UIP_BROADCAST */ | ||
| 915 | |||
| 916 | /* Check if the packet is destined for our IP address. */ | ||
| 917 | #if !UIP_CONF_IPV6 | ||
| 918 | if(!uip_ipaddr_cmp(&BUF->destipaddr, &uip_hostaddr)) { | ||
| 919 | UIP_STAT(++uip_stat.ip.drop); | ||
| 920 | goto drop; | ||
| 921 | } | ||
| 922 | #else /* UIP_CONF_IPV6 */ | ||
| 923 | /* For IPv6, packet reception is a little trickier as we need to | ||
| 924 | make sure that we listen to certain multicast addresses (all | ||
| 925 | hosts multicast address, and the solicited-node multicast | ||
| 926 | address) as well. However, we will cheat here and accept all | ||
| 927 | multicast packets that are sent to the ff02::/16 addresses. */ | ||
| 928 | if(!uip_ipaddr_cmp(&BUF->destipaddr, &uip_hostaddr) && | ||
| 929 | BUF->destipaddr.u16[0] != HTONS(0xff02)) { | ||
| 930 | UIP_STAT(++uip_stat.ip.drop); | ||
| 931 | goto drop; | ||
| 932 | } | ||
| 933 | #endif /* UIP_CONF_IPV6 */ | ||
| 934 | } | ||
| 935 | |||
| 936 | #if !UIP_CONF_IPV6 | ||
| 937 | if(uip_ipchksum() != 0xffff) { /* Compute and check the IP header | ||
| 938 | checksum. */ | ||
| 939 | UIP_STAT(++uip_stat.ip.drop); | ||
| 940 | UIP_STAT(++uip_stat.ip.chkerr); | ||
| 941 | UIP_LOG("ip: bad checksum."); | ||
| 942 | goto drop; | ||
| 943 | } | ||
| 944 | #endif /* UIP_CONF_IPV6 */ | ||
| 945 | |||
| 946 | if(BUF->proto == UIP_PROTO_TCP) { /* Check for TCP packet. If so, | ||
| 947 | proceed with TCP input | ||
| 948 | processing. */ | ||
| 949 | goto tcp_input; | ||
| 950 | } | ||
| 951 | |||
| 952 | #if UIP_UDP | ||
| 953 | if(BUF->proto == UIP_PROTO_UDP) { | ||
| 954 | goto udp_input; | ||
| 955 | } | ||
| 956 | #endif /* UIP_UDP */ | ||
| 957 | |||
| 958 | #if !UIP_CONF_IPV6 | ||
| 959 | /* ICMPv4 processing code follows. */ | ||
| 960 | if(BUF->proto != UIP_PROTO_ICMP) { /* We only allow ICMP packets from | ||
| 961 | here. */ | ||
| 962 | UIP_STAT(++uip_stat.ip.drop); | ||
| 963 | UIP_STAT(++uip_stat.ip.protoerr); | ||
| 964 | UIP_LOG("ip: neither tcp nor icmp."); | ||
| 965 | goto drop; | ||
| 966 | } | ||
| 967 | |||
| 968 | #if UIP_PINGADDRCONF | ||
| 969 | icmp_input: | ||
| 970 | #endif /* UIP_PINGADDRCONF */ | ||
| 971 | UIP_STAT(++uip_stat.icmp.recv); | ||
| 972 | |||
| 973 | /* ICMP echo (i.e., ping) processing. This is simple, we only change | ||
| 974 | the ICMP type from ECHO to ECHO_REPLY and adjust the ICMP | ||
| 975 | checksum before we return the packet. */ | ||
| 976 | if(ICMPBUF->type != ICMP_ECHO) { | ||
| 977 | UIP_STAT(++uip_stat.icmp.drop); | ||
| 978 | UIP_STAT(++uip_stat.icmp.typeerr); | ||
| 979 | UIP_LOG("icmp: not icmp echo."); | ||
| 980 | goto drop; | ||
| 981 | } | ||
| 982 | |||
| 983 | /* If we are configured to use ping IP address assignment, we use | ||
| 984 | the destination IP address of this ping packet and assign it to | ||
| 985 | yourself. */ | ||
| 986 | #if UIP_PINGADDRCONF | ||
| 987 | if(uip_ipaddr_cmp(&uip_hostaddr, &uip_all_zeroes_addr)) { | ||
| 988 | uip_hostaddr = BUF->destipaddr; | ||
| 989 | } | ||
| 990 | #endif /* UIP_PINGADDRCONF */ | ||
| 991 | |||
| 992 | ICMPBUF->type = ICMP_ECHO_REPLY; | ||
| 993 | |||
| 994 | if(ICMPBUF->icmpchksum >= HTONS(0xffff - (ICMP_ECHO << 8))) { | ||
| 995 | ICMPBUF->icmpchksum += HTONS(ICMP_ECHO << 8) + 1; | ||
| 996 | } else { | ||
| 997 | ICMPBUF->icmpchksum += HTONS(ICMP_ECHO << 8); | ||
| 998 | } | ||
| 999 | |||
| 1000 | /* Swap IP addresses. */ | ||
| 1001 | uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr); | ||
| 1002 | uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr); | ||
| 1003 | |||
| 1004 | UIP_STAT(++uip_stat.icmp.sent); | ||
| 1005 | BUF->ttl = UIP_TTL; | ||
| 1006 | goto ip_send_nolen; | ||
| 1007 | |||
| 1008 | /* End of IPv4 input header processing code. */ | ||
| 1009 | #else /* !UIP_CONF_IPV6 */ | ||
| 1010 | |||
| 1011 | /* This is IPv6 ICMPv6 processing code. */ | ||
| 1012 | DEBUG_PRINTF("icmp6_input: length %d\n", uip_len); | ||
| 1013 | |||
| 1014 | if(BUF->proto != UIP_PROTO_ICMP6) { /* We only allow ICMPv6 packets from | ||
| 1015 | here. */ | ||
| 1016 | UIP_STAT(++uip_stat.ip.drop); | ||
| 1017 | UIP_STAT(++uip_stat.ip.protoerr); | ||
| 1018 | UIP_LOG("ip: neither tcp nor icmp6."); | ||
| 1019 | goto drop; | ||
| 1020 | } | ||
| 1021 | |||
| 1022 | UIP_STAT(++uip_stat.icmp.recv); | ||
| 1023 | |||
| 1024 | /* If we get a neighbor solicitation for our address we should send | ||
| 1025 | a neighbor advertisement message back. */ | ||
| 1026 | if(ICMPBUF->type == ICMP6_NEIGHBOR_SOLICITATION) { | ||
| 1027 | if(uip_ipaddr_cmp(&ICMPBUF->icmp6data, &uip_hostaddr)) { | ||
| 1028 | |||
| 1029 | if(ICMPBUF->options[0] == ICMP6_OPTION_SOURCE_LINK_ADDRESS) { | ||
| 1030 | /* Save the sender's address in our neighbor list. */ | ||
| 1031 | uip_neighbor_add(&ICMPBUF->srcipaddr, &(ICMPBUF->options[2])); | ||
| 1032 | } | ||
| 1033 | |||
| 1034 | /* We should now send a neighbor advertisement back to where the | ||
| 1035 | neighbor solicitation came from. */ | ||
| 1036 | ICMPBUF->type = ICMP6_NEIGHBOR_ADVERTISEMENT; | ||
| 1037 | ICMPBUF->flags = ICMP6_FLAG_S; /* Solicited flag. */ | ||
| 1038 | |||
| 1039 | ICMPBUF->reserved1 = ICMPBUF->reserved2 = ICMPBUF->reserved3 = 0; | ||
| 1040 | |||
| 1041 | uip_ipaddr_copy(&ICMPBUF->destipaddr, &ICMPBUF->srcipaddr); | ||
| 1042 | uip_ipaddr_copy(&ICMPBUF->srcipaddr, &uip_hostaddr); | ||
| 1043 | ICMPBUF->options[0] = ICMP6_OPTION_TARGET_LINK_ADDRESS; | ||
| 1044 | ICMPBUF->options[1] = 1; /* Options length, 1 = 8 bytes. */ | ||
| 1045 | memcpy(&(ICMPBUF->options[2]), &uip_ethaddr, sizeof(uip_ethaddr)); | ||
| 1046 | ICMPBUF->icmpchksum = 0; | ||
| 1047 | ICMPBUF->icmpchksum = ~uip_icmp6chksum(); | ||
| 1048 | |||
| 1049 | goto send; | ||
| 1050 | |||
| 1051 | } | ||
| 1052 | goto drop; | ||
| 1053 | } else if(ICMPBUF->type == ICMP6_ECHO) { | ||
| 1054 | /* ICMP echo (i.e., ping) processing. This is simple, we only | ||
| 1055 | change the ICMP type from ECHO to ECHO_REPLY and update the | ||
| 1056 | ICMP checksum before we return the packet. */ | ||
| 1057 | |||
| 1058 | ICMPBUF->type = ICMP6_ECHO_REPLY; | ||
| 1059 | |||
| 1060 | uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr); | ||
| 1061 | uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr); | ||
| 1062 | ICMPBUF->icmpchksum = 0; | ||
| 1063 | ICMPBUF->icmpchksum = ~uip_icmp6chksum(); | ||
| 1064 | |||
| 1065 | UIP_STAT(++uip_stat.icmp.sent); | ||
| 1066 | goto send; | ||
| 1067 | } else { | ||
| 1068 | DEBUG_PRINTF("Unknown icmp6 message type %d\n", ICMPBUF->type); | ||
| 1069 | UIP_STAT(++uip_stat.icmp.drop); | ||
| 1070 | UIP_STAT(++uip_stat.icmp.typeerr); | ||
| 1071 | UIP_LOG("icmp: unknown ICMP message."); | ||
| 1072 | goto drop; | ||
| 1073 | } | ||
| 1074 | |||
| 1075 | /* End of IPv6 ICMP processing. */ | ||
| 1076 | |||
| 1077 | #endif /* !UIP_CONF_IPV6 */ | ||
| 1078 | |||
| 1079 | #if UIP_UDP | ||
| 1080 | /* UDP input processing. */ | ||
| 1081 | udp_input: | ||
| 1082 | /* UDP processing is really just a hack. We don't do anything to the | ||
| 1083 | UDP/IP headers, but let the UDP application do all the hard | ||
| 1084 | work. If the application sets uip_slen, it has a packet to | ||
| 1085 | send. */ | ||
| 1086 | #if UIP_UDP_CHECKSUMS | ||
| 1087 | uip_len = uip_len - UIP_IPUDPH_LEN; | ||
| 1088 | uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN]; | ||
| 1089 | if(UDPBUF->udpchksum != 0 && uip_udpchksum() != 0xffff) { | ||
| 1090 | UIP_STAT(++uip_stat.udp.drop); | ||
| 1091 | UIP_STAT(++uip_stat.udp.chkerr); | ||
| 1092 | UIP_LOG("udp: bad checksum."); | ||
| 1093 | goto drop; | ||
| 1094 | } | ||
| 1095 | #else /* UIP_UDP_CHECKSUMS */ | ||
| 1096 | uip_len = uip_len - UIP_IPUDPH_LEN; | ||
| 1097 | #endif /* UIP_UDP_CHECKSUMS */ | ||
| 1098 | |||
| 1099 | /* Demultiplex this UDP packet between the UDP "connections". */ | ||
| 1100 | for(uip_udp_conn = &uip_udp_conns[0]; | ||
| 1101 | uip_udp_conn < &uip_udp_conns[UIP_UDP_CONNS]; | ||
| 1102 | ++uip_udp_conn) { | ||
| 1103 | /* If the local UDP port is non-zero, the connection is considered | ||
| 1104 | to be used. If so, the local port number is checked against the | ||
| 1105 | destination port number in the received packet. If the two port | ||
| 1106 | numbers match, the remote port number is checked if the | ||
| 1107 | connection is bound to a remote port. Finally, if the | ||
| 1108 | connection is bound to a remote IP address, the source IP | ||
| 1109 | address of the packet is checked. */ | ||
| 1110 | if(uip_udp_conn->lport != 0 && | ||
| 1111 | UDPBUF->destport == uip_udp_conn->lport && | ||
| 1112 | (uip_udp_conn->rport == 0 || | ||
| 1113 | UDPBUF->srcport == uip_udp_conn->rport) && | ||
| 1114 | (uip_ipaddr_cmp(&uip_udp_conn->ripaddr, &uip_all_zeroes_addr) || | ||
| 1115 | uip_ipaddr_cmp(&uip_udp_conn->ripaddr, &uip_broadcast_addr) || | ||
| 1116 | uip_ipaddr_cmp(&BUF->srcipaddr, &uip_udp_conn->ripaddr))) { | ||
| 1117 | goto udp_found; | ||
| 1118 | } | ||
| 1119 | } | ||
| 1120 | UIP_LOG("udp: no matching connection found"); | ||
| 1121 | #if UIP_CONF_ICMP_DEST_UNREACH && !UIP_CONF_IPV6 | ||
| 1122 | /* Copy fields from packet header into payload of this ICMP packet. */ | ||
| 1123 | memcpy(&(ICMPBUF->payload[0]), ICMPBUF, UIP_IPH_LEN + 8); | ||
| 1124 | |||
| 1125 | /* Set the ICMP type and code. */ | ||
| 1126 | ICMPBUF->type = ICMP_DEST_UNREACHABLE; | ||
| 1127 | ICMPBUF->icode = ICMP_PORT_UNREACHABLE; | ||
| 1128 | |||
| 1129 | /* Calculate the ICMP checksum. */ | ||
| 1130 | ICMPBUF->icmpchksum = 0; | ||
| 1131 | ICMPBUF->icmpchksum = ~uip_chksum((u16_t *)&(ICMPBUF->type), 36); | ||
| 1132 | |||
| 1133 | /* Set the IP destination address to be the source address of the | ||
| 1134 | original packet. */ | ||
| 1135 | uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr); | ||
| 1136 | |||
| 1137 | /* Set our IP address as the source address. */ | ||
| 1138 | uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr); | ||
| 1139 | |||
| 1140 | /* The size of the ICMP destination unreachable packet is 36 + the | ||
| 1141 | size of the IP header (20) = 56. */ | ||
| 1142 | uip_len = 36 + UIP_IPH_LEN; | ||
| 1143 | ICMPBUF->len[0] = 0; | ||
| 1144 | ICMPBUF->len[1] = (u8_t)uip_len; | ||
| 1145 | ICMPBUF->ttl = UIP_TTL; | ||
| 1146 | ICMPBUF->proto = UIP_PROTO_ICMP; | ||
| 1147 | |||
| 1148 | goto ip_send_nolen; | ||
| 1149 | #else /* UIP_CONF_ICMP_DEST_UNREACH */ | ||
| 1150 | goto drop; | ||
| 1151 | #endif /* UIP_CONF_ICMP_DEST_UNREACH */ | ||
| 1152 | |||
| 1153 | udp_found: | ||
| 1154 | uip_conn = NULL; | ||
| 1155 | uip_flags = UIP_NEWDATA; | ||
| 1156 | uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN]; | ||
| 1157 | uip_slen = 0; | ||
| 1158 | UIP_UDP_APPCALL(); | ||
| 1159 | |||
| 1160 | udp_send: | ||
| 1161 | if(uip_slen == 0) { | ||
| 1162 | goto drop; | ||
| 1163 | } | ||
| 1164 | uip_len = uip_slen + UIP_IPUDPH_LEN; | ||
| 1165 | |||
| 1166 | #if UIP_CONF_IPV6 | ||
| 1167 | /* For IPv6, the IP length field does not include the IPv6 IP header | ||
| 1168 | length. */ | ||
| 1169 | BUF->len[0] = ((uip_len - UIP_IPH_LEN) >> 8); | ||
| 1170 | BUF->len[1] = ((uip_len - UIP_IPH_LEN) & 0xff); | ||
| 1171 | #else /* UIP_CONF_IPV6 */ | ||
| 1172 | BUF->len[0] = (uip_len >> 8); | ||
| 1173 | BUF->len[1] = (uip_len & 0xff); | ||
| 1174 | #endif /* UIP_CONF_IPV6 */ | ||
| 1175 | |||
| 1176 | BUF->ttl = uip_udp_conn->ttl; | ||
| 1177 | BUF->proto = UIP_PROTO_UDP; | ||
| 1178 | |||
| 1179 | UDPBUF->udplen = HTONS(uip_slen + UIP_UDPH_LEN); | ||
| 1180 | UDPBUF->udpchksum = 0; | ||
| 1181 | |||
| 1182 | BUF->srcport = uip_udp_conn->lport; | ||
| 1183 | BUF->destport = uip_udp_conn->rport; | ||
| 1184 | |||
| 1185 | uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr); | ||
| 1186 | uip_ipaddr_copy(&BUF->destipaddr, &uip_udp_conn->ripaddr); | ||
| 1187 | |||
| 1188 | uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPTCPH_LEN]; | ||
| 1189 | |||
| 1190 | #if UIP_UDP_CHECKSUMS | ||
| 1191 | /* Calculate UDP checksum. */ | ||
| 1192 | UDPBUF->udpchksum = ~(uip_udpchksum()); | ||
| 1193 | if(UDPBUF->udpchksum == 0) { | ||
| 1194 | UDPBUF->udpchksum = 0xffff; | ||
| 1195 | } | ||
| 1196 | #endif /* UIP_UDP_CHECKSUMS */ | ||
| 1197 | |||
| 1198 | goto ip_send_nolen; | ||
| 1199 | #endif /* UIP_UDP */ | ||
| 1200 | |||
| 1201 | /* TCP input processing. */ | ||
| 1202 | tcp_input: | ||
| 1203 | UIP_STAT(++uip_stat.tcp.recv); | ||
| 1204 | |||
| 1205 | /* Start of TCP input header processing code. */ | ||
| 1206 | |||
| 1207 | if(uip_tcpchksum() != 0xffff) { /* Compute and check the TCP | ||
| 1208 | checksum. */ | ||
| 1209 | UIP_STAT(++uip_stat.tcp.drop); | ||
| 1210 | UIP_STAT(++uip_stat.tcp.chkerr); | ||
| 1211 | UIP_LOG("tcp: bad checksum."); | ||
| 1212 | goto drop; | ||
| 1213 | } | ||
| 1214 | |||
| 1215 | /* Demultiplex this segment. */ | ||
| 1216 | /* First check any active connections. */ | ||
| 1217 | for(uip_connr = &uip_conns[0]; uip_connr <= &uip_conns[UIP_CONNS - 1]; | ||
| 1218 | ++uip_connr) { | ||
| 1219 | if(uip_connr->tcpstateflags != UIP_CLOSED && | ||
| 1220 | BUF->destport == uip_connr->lport && | ||
| 1221 | BUF->srcport == uip_connr->rport && | ||
| 1222 | uip_ipaddr_cmp(&BUF->srcipaddr, &uip_connr->ripaddr)) { | ||
| 1223 | goto found; | ||
| 1224 | } | ||
| 1225 | } | ||
| 1226 | |||
| 1227 | /* If we didn't find and active connection that expected the packet, | ||
| 1228 | either this packet is an old duplicate, or this is a SYN packet | ||
| 1229 | destined for a connection in LISTEN. If the SYN flag isn't set, | ||
| 1230 | it is an old packet and we send a RST. */ | ||
| 1231 | if((BUF->flags & TCP_CTL) != TCP_SYN) { | ||
| 1232 | goto reset; | ||
| 1233 | } | ||
| 1234 | |||
| 1235 | tmp16 = BUF->destport; | ||
| 1236 | /* Next, check listening connections. */ | ||
| 1237 | for(c = 0; c < UIP_LISTENPORTS; ++c) { | ||
| 1238 | if(tmp16 == uip_listenports[c]) { | ||
| 1239 | goto found_listen; | ||
| 1240 | } | ||
| 1241 | } | ||
| 1242 | |||
| 1243 | /* No matching connection found, so we send a RST packet. */ | ||
| 1244 | UIP_STAT(++uip_stat.tcp.synrst); | ||
| 1245 | |||
| 1246 | reset: | ||
| 1247 | /* We do not send resets in response to resets. */ | ||
| 1248 | if(BUF->flags & TCP_RST) { | ||
| 1249 | goto drop; | ||
| 1250 | } | ||
| 1251 | |||
| 1252 | UIP_STAT(++uip_stat.tcp.rst); | ||
| 1253 | |||
| 1254 | BUF->flags = TCP_RST | TCP_ACK; | ||
| 1255 | uip_len = UIP_IPTCPH_LEN; | ||
| 1256 | BUF->tcpoffset = 5 << 4; | ||
| 1257 | |||
| 1258 | /* Flip the seqno and ackno fields in the TCP header. */ | ||
| 1259 | c = BUF->seqno[3]; | ||
| 1260 | BUF->seqno[3] = BUF->ackno[3]; | ||
| 1261 | BUF->ackno[3] = c; | ||
| 1262 | |||
| 1263 | c = BUF->seqno[2]; | ||
| 1264 | BUF->seqno[2] = BUF->ackno[2]; | ||
| 1265 | BUF->ackno[2] = c; | ||
| 1266 | |||
| 1267 | c = BUF->seqno[1]; | ||
| 1268 | BUF->seqno[1] = BUF->ackno[1]; | ||
| 1269 | BUF->ackno[1] = c; | ||
| 1270 | |||
| 1271 | c = BUF->seqno[0]; | ||
| 1272 | BUF->seqno[0] = BUF->ackno[0]; | ||
| 1273 | BUF->ackno[0] = c; | ||
| 1274 | |||
| 1275 | /* We also have to increase the sequence number we are | ||
| 1276 | acknowledging. If the least significant byte overflowed, we need | ||
| 1277 | to propagate the carry to the other bytes as well. */ | ||
| 1278 | if(++BUF->ackno[3] == 0) { | ||
| 1279 | if(++BUF->ackno[2] == 0) { | ||
| 1280 | if(++BUF->ackno[1] == 0) { | ||
| 1281 | ++BUF->ackno[0]; | ||
| 1282 | } | ||
| 1283 | } | ||
| 1284 | } | ||
| 1285 | |||
| 1286 | /* Swap port numbers. */ | ||
| 1287 | tmp16 = BUF->srcport; | ||
| 1288 | BUF->srcport = BUF->destport; | ||
| 1289 | BUF->destport = tmp16; | ||
| 1290 | |||
| 1291 | /* Swap IP addresses. */ | ||
| 1292 | uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr); | ||
| 1293 | uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr); | ||
| 1294 | |||
| 1295 | /* And send out the RST packet! */ | ||
| 1296 | goto tcp_send_noconn; | ||
| 1297 | |||
| 1298 | /* This label will be jumped to if we matched the incoming packet | ||
| 1299 | with a connection in LISTEN. In that case, we should create a new | ||
| 1300 | connection and send a SYNACK in return. */ | ||
| 1301 | found_listen: | ||
| 1302 | /* First we check if there are any connections available. Unused | ||
| 1303 | connections are kept in the same table as used connections, but | ||
| 1304 | unused ones have the tcpstate set to CLOSED. Also, connections in | ||
| 1305 | TIME_WAIT are kept track of and we'll use the oldest one if no | ||
| 1306 | CLOSED connections are found. Thanks to Eddie C. Dost for a very | ||
| 1307 | nice algorithm for the TIME_WAIT search. */ | ||
| 1308 | uip_connr = 0; | ||
| 1309 | for(c = 0; c < UIP_CONNS; ++c) { | ||
| 1310 | if(uip_conns[c].tcpstateflags == UIP_CLOSED) { | ||
| 1311 | uip_connr = &uip_conns[c]; | ||
| 1312 | break; | ||
| 1313 | } | ||
| 1314 | if(uip_conns[c].tcpstateflags == UIP_TIME_WAIT) { | ||
| 1315 | if(uip_connr == 0 || | ||
| 1316 | uip_conns[c].timer > uip_connr->timer) { | ||
| 1317 | uip_connr = &uip_conns[c]; | ||
| 1318 | } | ||
| 1319 | } | ||
| 1320 | } | ||
| 1321 | |||
| 1322 | if(uip_connr == 0) { | ||
| 1323 | /* All connections are used already, we drop packet and hope that | ||
| 1324 | the remote end will retransmit the packet at a time when we | ||
| 1325 | have more spare connections. */ | ||
| 1326 | UIP_STAT(++uip_stat.tcp.syndrop); | ||
| 1327 | UIP_LOG("tcp: found no unused connections."); | ||
| 1328 | goto drop; | ||
| 1329 | } | ||
| 1330 | uip_conn = uip_connr; | ||
| 1331 | |||
| 1332 | /* Fill in the necessary fields for the new connection. */ | ||
| 1333 | uip_connr->rto = uip_connr->timer = UIP_RTO; | ||
| 1334 | uip_connr->sa = 0; | ||
| 1335 | uip_connr->sv = 4; | ||
| 1336 | uip_connr->nrtx = 0; | ||
| 1337 | uip_connr->lport = BUF->destport; | ||
| 1338 | uip_connr->rport = BUF->srcport; | ||
| 1339 | uip_ipaddr_copy(&uip_connr->ripaddr, &BUF->srcipaddr); | ||
| 1340 | uip_connr->tcpstateflags = UIP_SYN_RCVD; | ||
| 1341 | |||
| 1342 | uip_connr->snd_nxt[0] = iss[0]; | ||
| 1343 | uip_connr->snd_nxt[1] = iss[1]; | ||
| 1344 | uip_connr->snd_nxt[2] = iss[2]; | ||
| 1345 | uip_connr->snd_nxt[3] = iss[3]; | ||
| 1346 | uip_connr->len = 1; | ||
| 1347 | |||
| 1348 | /* rcv_nxt should be the seqno from the incoming packet + 1. */ | ||
| 1349 | uip_connr->rcv_nxt[3] = BUF->seqno[3]; | ||
| 1350 | uip_connr->rcv_nxt[2] = BUF->seqno[2]; | ||
| 1351 | uip_connr->rcv_nxt[1] = BUF->seqno[1]; | ||
| 1352 | uip_connr->rcv_nxt[0] = BUF->seqno[0]; | ||
| 1353 | uip_add_rcv_nxt(1); | ||
| 1354 | |||
| 1355 | /* Parse the TCP MSS option, if present. */ | ||
| 1356 | if((BUF->tcpoffset & 0xf0) > 0x50) { | ||
| 1357 | for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) { | ||
| 1358 | opt = uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + c]; | ||
| 1359 | if(opt == TCP_OPT_END) { | ||
| 1360 | /* End of options. */ | ||
| 1361 | break; | ||
| 1362 | } else if(opt == TCP_OPT_NOOP) { | ||
| 1363 | ++c; | ||
| 1364 | /* NOP option. */ | ||
| 1365 | } else if(opt == TCP_OPT_MSS && | ||
| 1366 | uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN) { | ||
| 1367 | /* An MSS option with the right option length. */ | ||
| 1368 | tmp16 = ((u16_t)uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8) | | ||
| 1369 | (u16_t)uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + 3 + c]; | ||
| 1370 | uip_connr->initialmss = uip_connr->mss = | ||
| 1371 | tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16; | ||
| 1372 | |||
| 1373 | /* And we are done processing options. */ | ||
| 1374 | break; | ||
| 1375 | } else { | ||
| 1376 | /* All other options have a length field, so that we easily | ||
| 1377 | can skip past them. */ | ||
| 1378 | if(uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0) { | ||
| 1379 | /* If the length field is zero, the options are malformed | ||
| 1380 | and we don't process them further. */ | ||
| 1381 | break; | ||
| 1382 | } | ||
| 1383 | c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c]; | ||
| 1384 | } | ||
| 1385 | } | ||
| 1386 | } | ||
| 1387 | |||
| 1388 | /* Our response will be a SYNACK. */ | ||
| 1389 | #if UIP_ACTIVE_OPEN | ||
| 1390 | tcp_send_synack: | ||
| 1391 | BUF->flags = TCP_ACK; | ||
| 1392 | |||
| 1393 | tcp_send_syn: | ||
| 1394 | BUF->flags |= TCP_SYN; | ||
| 1395 | #else /* UIP_ACTIVE_OPEN */ | ||
| 1396 | tcp_send_synack: | ||
| 1397 | BUF->flags = TCP_SYN | TCP_ACK; | ||
| 1398 | #endif /* UIP_ACTIVE_OPEN */ | ||
| 1399 | |||
| 1400 | /* We send out the TCP Maximum Segment Size option with our | ||
| 1401 | SYNACK. */ | ||
| 1402 | BUF->optdata[0] = TCP_OPT_MSS; | ||
| 1403 | BUF->optdata[1] = TCP_OPT_MSS_LEN; | ||
| 1404 | BUF->optdata[2] = (UIP_TCP_MSS) / 256; | ||
| 1405 | BUF->optdata[3] = (UIP_TCP_MSS) & 255; | ||
| 1406 | uip_len = UIP_IPTCPH_LEN + TCP_OPT_MSS_LEN; | ||
| 1407 | BUF->tcpoffset = ((UIP_TCPH_LEN + TCP_OPT_MSS_LEN) / 4) << 4; | ||
| 1408 | goto tcp_send; | ||
| 1409 | |||
| 1410 | /* This label will be jumped to if we found an active connection. */ | ||
| 1411 | found: | ||
| 1412 | uip_conn = uip_connr; | ||
| 1413 | uip_flags = 0; | ||
| 1414 | /* We do a very naive form of TCP reset processing; we just accept | ||
| 1415 | any RST and kill our connection. We should in fact check if the | ||
| 1416 | sequence number of this reset is within our advertised window | ||
| 1417 | before we accept the reset. */ | ||
| 1418 | if(BUF->flags & TCP_RST) { | ||
| 1419 | uip_connr->tcpstateflags = UIP_CLOSED; | ||
| 1420 | UIP_LOG("tcp: got reset, aborting connection."); | ||
| 1421 | uip_flags = UIP_ABORT; | ||
| 1422 | UIP_APPCALL(); | ||
| 1423 | goto drop; | ||
| 1424 | } | ||
| 1425 | /* Calculate the length of the data, if the application has sent | ||
| 1426 | any data to us. */ | ||
| 1427 | c = (BUF->tcpoffset >> 4) << 2; | ||
| 1428 | /* uip_len will contain the length of the actual TCP data. This is | ||
| 1429 | calculated by subtracing the length of the TCP header (in | ||
| 1430 | c) and the length of the IP header (20 bytes). */ | ||
| 1431 | uip_len = uip_len - c - UIP_IPH_LEN; | ||
| 1432 | |||
| 1433 | /* First, check if the sequence number of the incoming packet is | ||
| 1434 | what we're expecting next. If not, we send out an ACK with the | ||
| 1435 | correct numbers in. */ | ||
| 1436 | if(!(((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_SYN_SENT) && | ||
| 1437 | ((BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK)))) { | ||
| 1438 | if((uip_len > 0 || ((BUF->flags & (TCP_SYN | TCP_FIN)) != 0)) && | ||
| 1439 | (BUF->seqno[0] != uip_connr->rcv_nxt[0] || | ||
| 1440 | BUF->seqno[1] != uip_connr->rcv_nxt[1] || | ||
| 1441 | BUF->seqno[2] != uip_connr->rcv_nxt[2] || | ||
| 1442 | BUF->seqno[3] != uip_connr->rcv_nxt[3])) { | ||
| 1443 | goto tcp_send_ack; | ||
| 1444 | } | ||
| 1445 | } | ||
| 1446 | |||
| 1447 | /* Next, check if the incoming segment acknowledges any outstanding | ||
| 1448 | data. If so, we update the sequence number, reset the length of | ||
| 1449 | the outstanding data, calculate RTT estimations, and reset the | ||
| 1450 | retransmission timer. */ | ||
| 1451 | if((BUF->flags & TCP_ACK) && uip_outstanding(uip_connr)) { | ||
| 1452 | uip_add32(uip_connr->snd_nxt, uip_connr->len); | ||
| 1453 | |||
| 1454 | if(BUF->ackno[0] == uip_acc32[0] && | ||
| 1455 | BUF->ackno[1] == uip_acc32[1] && | ||
| 1456 | BUF->ackno[2] == uip_acc32[2] && | ||
| 1457 | BUF->ackno[3] == uip_acc32[3]) { | ||
| 1458 | /* Update sequence number. */ | ||
| 1459 | uip_connr->snd_nxt[0] = uip_acc32[0]; | ||
| 1460 | uip_connr->snd_nxt[1] = uip_acc32[1]; | ||
| 1461 | uip_connr->snd_nxt[2] = uip_acc32[2]; | ||
| 1462 | uip_connr->snd_nxt[3] = uip_acc32[3]; | ||
| 1463 | |||
| 1464 | /* Do RTT estimation, unless we have done retransmissions. */ | ||
| 1465 | if(uip_connr->nrtx == 0) { | ||
| 1466 | signed char m; | ||
| 1467 | m = uip_connr->rto - uip_connr->timer; | ||
| 1468 | /* This is taken directly from VJs original code in his paper */ | ||
| 1469 | m = m - (uip_connr->sa >> 3); | ||
| 1470 | uip_connr->sa += m; | ||
| 1471 | if(m < 0) { | ||
| 1472 | m = -m; | ||
| 1473 | } | ||
| 1474 | m = m - (uip_connr->sv >> 2); | ||
| 1475 | uip_connr->sv += m; | ||
| 1476 | uip_connr->rto = (uip_connr->sa >> 3) + uip_connr->sv; | ||
| 1477 | |||
| 1478 | } | ||
| 1479 | /* Set the acknowledged flag. */ | ||
| 1480 | uip_flags = UIP_ACKDATA; | ||
| 1481 | /* Reset the retransmission timer. */ | ||
| 1482 | uip_connr->timer = uip_connr->rto; | ||
| 1483 | |||
| 1484 | /* Reset length of outstanding data. */ | ||
| 1485 | uip_connr->len = 0; | ||
| 1486 | } | ||
| 1487 | |||
| 1488 | } | ||
| 1489 | |||
| 1490 | /* Do different things depending on in what state the connection is. */ | ||
| 1491 | switch(uip_connr->tcpstateflags & UIP_TS_MASK) { | ||
| 1492 | /* CLOSED and LISTEN are not handled here. CLOSE_WAIT is not | ||
| 1493 | implemented, since we force the application to close when the | ||
| 1494 | peer sends a FIN (hence the application goes directly from | ||
| 1495 | ESTABLISHED to LAST_ACK). */ | ||
| 1496 | case UIP_SYN_RCVD: | ||
| 1497 | /* In SYN_RCVD we have sent out a SYNACK in response to a SYN, and | ||
| 1498 | we are waiting for an ACK that acknowledges the data we sent | ||
| 1499 | out the last time. Therefore, we want to have the UIP_ACKDATA | ||
| 1500 | flag set. If so, we enter the ESTABLISHED state. */ | ||
| 1501 | if(uip_flags & UIP_ACKDATA) { | ||
| 1502 | uip_connr->tcpstateflags = UIP_ESTABLISHED; | ||
| 1503 | uip_flags = UIP_CONNECTED; | ||
| 1504 | uip_connr->len = 0; | ||
| 1505 | if(uip_len > 0) { | ||
| 1506 | uip_flags |= UIP_NEWDATA; | ||
| 1507 | uip_add_rcv_nxt(uip_len); | ||
| 1508 | } | ||
| 1509 | uip_slen = 0; | ||
| 1510 | UIP_APPCALL(); | ||
| 1511 | goto appsend; | ||
| 1512 | } | ||
| 1513 | goto drop; | ||
| 1514 | #if UIP_ACTIVE_OPEN | ||
| 1515 | case UIP_SYN_SENT: | ||
| 1516 | /* In SYN_SENT, we wait for a SYNACK that is sent in response to | ||
| 1517 | our SYN. The rcv_nxt is set to sequence number in the SYNACK | ||
| 1518 | plus one, and we send an ACK. We move into the ESTABLISHED | ||
| 1519 | state. */ | ||
| 1520 | if((uip_flags & UIP_ACKDATA) && | ||
| 1521 | (BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK)) { | ||
| 1522 | |||
| 1523 | /* Parse the TCP MSS option, if present. */ | ||
| 1524 | if((BUF->tcpoffset & 0xf0) > 0x50) { | ||
| 1525 | for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) { | ||
| 1526 | opt = uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + c]; | ||
| 1527 | if(opt == TCP_OPT_END) { | ||
| 1528 | /* End of options. */ | ||
| 1529 | break; | ||
| 1530 | } else if(opt == TCP_OPT_NOOP) { | ||
| 1531 | ++c; | ||
| 1532 | /* NOP option. */ | ||
| 1533 | } else if(opt == TCP_OPT_MSS && | ||
| 1534 | uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN) { | ||
| 1535 | /* An MSS option with the right option length. */ | ||
| 1536 | tmp16 = (uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8) | | ||
| 1537 | uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 3 + c]; | ||
| 1538 | uip_connr->initialmss = | ||
| 1539 | uip_connr->mss = tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16; | ||
| 1540 | |||
| 1541 | /* And we are done processing options. */ | ||
| 1542 | break; | ||
| 1543 | } else { | ||
| 1544 | /* All other options have a length field, so that we easily | ||
| 1545 | can skip past them. */ | ||
| 1546 | if(uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0) { | ||
| 1547 | /* If the length field is zero, the options are malformed | ||
| 1548 | and we don't process them further. */ | ||
| 1549 | break; | ||
| 1550 | } | ||
| 1551 | c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c]; | ||
| 1552 | } | ||
| 1553 | } | ||
| 1554 | } | ||
| 1555 | uip_connr->tcpstateflags = UIP_ESTABLISHED; | ||
| 1556 | uip_connr->rcv_nxt[0] = BUF->seqno[0]; | ||
| 1557 | uip_connr->rcv_nxt[1] = BUF->seqno[1]; | ||
| 1558 | uip_connr->rcv_nxt[2] = BUF->seqno[2]; | ||
| 1559 | uip_connr->rcv_nxt[3] = BUF->seqno[3]; | ||
| 1560 | uip_add_rcv_nxt(1); | ||
| 1561 | uip_flags = UIP_CONNECTED | UIP_NEWDATA; | ||
| 1562 | uip_connr->len = 0; | ||
| 1563 | uip_len = 0; | ||
| 1564 | uip_slen = 0; | ||
| 1565 | UIP_APPCALL(); | ||
| 1566 | goto appsend; | ||
| 1567 | } | ||
| 1568 | /* Inform the application that the connection failed */ | ||
| 1569 | uip_flags = UIP_ABORT; | ||
| 1570 | UIP_APPCALL(); | ||
| 1571 | /* The connection is closed after we send the RST */ | ||
| 1572 | uip_conn->tcpstateflags = UIP_CLOSED; | ||
| 1573 | goto reset; | ||
| 1574 | #endif /* UIP_ACTIVE_OPEN */ | ||
| 1575 | |||
| 1576 | case UIP_ESTABLISHED: | ||
| 1577 | /* In the ESTABLISHED state, we call upon the application to feed | ||
| 1578 | data into the uip_buf. If the UIP_ACKDATA flag is set, the | ||
| 1579 | application should put new data into the buffer, otherwise we are | ||
| 1580 | retransmitting an old segment, and the application should put that | ||
| 1581 | data into the buffer. | ||
| 1582 | |||
| 1583 | If the incoming packet is a FIN, we should close the connection on | ||
| 1584 | this side as well, and we send out a FIN and enter the LAST_ACK | ||
| 1585 | state. We require that there is no outstanding data; otherwise the | ||
| 1586 | sequence numbers will be screwed up. */ | ||
| 1587 | |||
| 1588 | if(BUF->flags & TCP_FIN && !(uip_connr->tcpstateflags & UIP_STOPPED)) { | ||
| 1589 | if(uip_outstanding(uip_connr)) { | ||
| 1590 | goto drop; | ||
| 1591 | } | ||
| 1592 | uip_add_rcv_nxt(1 + uip_len); | ||
| 1593 | uip_flags |= UIP_CLOSE; | ||
| 1594 | if(uip_len > 0) { | ||
| 1595 | uip_flags |= UIP_NEWDATA; | ||
| 1596 | } | ||
| 1597 | UIP_APPCALL(); | ||
| 1598 | uip_connr->len = 1; | ||
| 1599 | uip_connr->tcpstateflags = UIP_LAST_ACK; | ||
| 1600 | uip_connr->nrtx = 0; | ||
| 1601 | tcp_send_finack: | ||
| 1602 | BUF->flags = TCP_FIN | TCP_ACK; | ||
| 1603 | goto tcp_send_nodata; | ||
| 1604 | } | ||
| 1605 | |||
| 1606 | /* Check the URG flag. If this is set, the segment carries urgent | ||
| 1607 | data that we must pass to the application. */ | ||
| 1608 | if((BUF->flags & TCP_URG) != 0) { | ||
| 1609 | #if UIP_URGDATA > 0 | ||
| 1610 | uip_urglen = (BUF->urgp[0] << 8) | BUF->urgp[1]; | ||
| 1611 | if(uip_urglen > uip_len) { | ||
| 1612 | /* There is more urgent data in the next segment to come. */ | ||
| 1613 | uip_urglen = uip_len; | ||
| 1614 | } | ||
| 1615 | uip_add_rcv_nxt(uip_urglen); | ||
| 1616 | uip_len -= uip_urglen; | ||
| 1617 | uip_urgdata = uip_appdata; | ||
| 1618 | uip_appdata += uip_urglen; | ||
| 1619 | } else { | ||
| 1620 | uip_urglen = 0; | ||
| 1621 | #else /* UIP_URGDATA > 0 */ | ||
| 1622 | uip_appdata = ((char *)uip_appdata) + ((BUF->urgp[0] << 8) | BUF->urgp[1]); | ||
| 1623 | uip_len -= (BUF->urgp[0] << 8) | BUF->urgp[1]; | ||
| 1624 | #endif /* UIP_URGDATA > 0 */ | ||
| 1625 | } | ||
| 1626 | |||
| 1627 | /* If uip_len > 0 we have TCP data in the packet, and we flag this | ||
| 1628 | by setting the UIP_NEWDATA flag and update the sequence number | ||
| 1629 | we acknowledge. If the application has stopped the dataflow | ||
| 1630 | using uip_stop(), we must not accept any data packets from the | ||
| 1631 | remote host. */ | ||
| 1632 | if(uip_len > 0 && !(uip_connr->tcpstateflags & UIP_STOPPED)) { | ||
| 1633 | uip_flags |= UIP_NEWDATA; | ||
| 1634 | uip_add_rcv_nxt(uip_len); | ||
| 1635 | } | ||
| 1636 | |||
| 1637 | /* Check if the available buffer space advertised by the other end | ||
| 1638 | is smaller than the initial MSS for this connection. If so, we | ||
| 1639 | set the current MSS to the window size to ensure that the | ||
| 1640 | application does not send more data than the other end can | ||
| 1641 | handle. | ||
| 1642 | |||
| 1643 | If the remote host advertises a zero window, we set the MSS to | ||
| 1644 | the initial MSS so that the application will send an entire MSS | ||
| 1645 | of data. This data will not be acknowledged by the receiver, | ||
| 1646 | and the application will retransmit it. This is called the | ||
| 1647 | "persistent timer" and uses the retransmission mechanism. | ||
| 1648 | */ | ||
| 1649 | tmp16 = ((u16_t)BUF->wnd[0] << 8) + (u16_t)BUF->wnd[1]; | ||
| 1650 | if(tmp16 > uip_connr->initialmss || | ||
| 1651 | tmp16 == 0) { | ||
| 1652 | tmp16 = uip_connr->initialmss; | ||
| 1653 | } | ||
| 1654 | uip_connr->mss = tmp16; | ||
| 1655 | |||
| 1656 | /* If this packet constitutes an ACK for outstanding data (flagged | ||
| 1657 | by the UIP_ACKDATA flag, we should call the application since it | ||
| 1658 | might want to send more data. If the incoming packet had data | ||
| 1659 | from the peer (as flagged by the UIP_NEWDATA flag), the | ||
| 1660 | application must also be notified. | ||
| 1661 | |||
| 1662 | When the application is called, the global variable uip_len | ||
| 1663 | contains the length of the incoming data. The application can | ||
| 1664 | access the incoming data through the global pointer | ||
| 1665 | uip_appdata, which usually points UIP_IPTCPH_LEN + UIP_LLH_LEN | ||
| 1666 | bytes into the uip_buf array. | ||
| 1667 | |||
| 1668 | If the application wishes to send any data, this data should be | ||
| 1669 | put into the uip_appdata and the length of the data should be | ||
| 1670 | put into uip_len. If the application don't have any data to | ||
| 1671 | send, uip_len must be set to 0. */ | ||
| 1672 | if(uip_flags & (UIP_NEWDATA | UIP_ACKDATA)) { | ||
| 1673 | uip_slen = 0; | ||
| 1674 | UIP_APPCALL(); | ||
| 1675 | |||
| 1676 | appsend: | ||
| 1677 | |||
| 1678 | if(uip_flags & UIP_ABORT) { | ||
| 1679 | uip_slen = 0; | ||
| 1680 | uip_connr->tcpstateflags = UIP_CLOSED; | ||
| 1681 | BUF->flags = TCP_RST | TCP_ACK; | ||
| 1682 | goto tcp_send_nodata; | ||
| 1683 | } | ||
| 1684 | |||
| 1685 | if(uip_flags & UIP_CLOSE) { | ||
| 1686 | uip_slen = 0; | ||
| 1687 | uip_connr->len = 1; | ||
| 1688 | uip_connr->tcpstateflags = UIP_FIN_WAIT_1; | ||
| 1689 | uip_connr->nrtx = 0; | ||
| 1690 | BUF->flags = TCP_FIN | TCP_ACK; | ||
| 1691 | goto tcp_send_nodata; | ||
| 1692 | } | ||
| 1693 | |||
| 1694 | /* If uip_slen > 0, the application has data to be sent. */ | ||
| 1695 | if(uip_slen > 0) { | ||
| 1696 | |||
| 1697 | /* If the connection has acknowledged data, the contents of | ||
| 1698 | the ->len variable should be discarded. */ | ||
| 1699 | if((uip_flags & UIP_ACKDATA) != 0) { | ||
| 1700 | uip_connr->len = 0; | ||
| 1701 | } | ||
| 1702 | |||
| 1703 | /* If the ->len variable is non-zero the connection has | ||
| 1704 | already data in transit and cannot send anymore right | ||
| 1705 | now. */ | ||
| 1706 | if(uip_connr->len == 0) { | ||
| 1707 | |||
| 1708 | /* The application cannot send more than what is allowed by | ||
| 1709 | the mss (the minumum of the MSS and the available | ||
| 1710 | window). */ | ||
| 1711 | if(uip_slen > uip_connr->mss) { | ||
| 1712 | uip_slen = uip_connr->mss; | ||
| 1713 | } | ||
| 1714 | |||
| 1715 | /* Remember how much data we send out now so that we know | ||
| 1716 | when everything has been acknowledged. */ | ||
| 1717 | uip_connr->len = uip_slen; | ||
| 1718 | } else { | ||
| 1719 | |||
| 1720 | /* If the application already had unacknowledged data, we | ||
| 1721 | make sure that the application does not send (i.e., | ||
| 1722 | retransmit) out more than it previously sent out. */ | ||
| 1723 | uip_slen = uip_connr->len; | ||
| 1724 | } | ||
| 1725 | } | ||
| 1726 | uip_connr->nrtx = 0; | ||
| 1727 | apprexmit: | ||
| 1728 | uip_appdata = uip_sappdata; | ||
| 1729 | |||
| 1730 | /* If the application has data to be sent, or if the incoming | ||
| 1731 | packet had new data in it, we must send out a packet. */ | ||
| 1732 | if(uip_slen > 0 && uip_connr->len > 0) { | ||
| 1733 | /* Add the length of the IP and TCP headers. */ | ||
| 1734 | uip_len = uip_connr->len + UIP_TCPIP_HLEN; | ||
| 1735 | /* We always set the ACK flag in response packets. */ | ||
| 1736 | BUF->flags = TCP_ACK | TCP_PSH; | ||
| 1737 | /* Send the packet. */ | ||
| 1738 | goto tcp_send_noopts; | ||
| 1739 | } | ||
| 1740 | /* If there is no data to send, just send out a pure ACK if | ||
| 1741 | there is newdata. */ | ||
| 1742 | if(uip_flags & UIP_NEWDATA) { | ||
| 1743 | uip_len = UIP_TCPIP_HLEN; | ||
| 1744 | BUF->flags = TCP_ACK; | ||
| 1745 | goto tcp_send_noopts; | ||
| 1746 | } | ||
| 1747 | } | ||
| 1748 | goto drop; | ||
| 1749 | case UIP_LAST_ACK: | ||
| 1750 | /* We can close this connection if the peer has acknowledged our | ||
| 1751 | FIN. This is indicated by the UIP_ACKDATA flag. */ | ||
| 1752 | if(uip_flags & UIP_ACKDATA) { | ||
| 1753 | uip_connr->tcpstateflags = UIP_CLOSED; | ||
| 1754 | uip_flags = UIP_CLOSE; | ||
| 1755 | UIP_APPCALL(); | ||
| 1756 | } | ||
| 1757 | break; | ||
| 1758 | |||
| 1759 | case UIP_FIN_WAIT_1: | ||
| 1760 | /* The application has closed the connection, but the remote host | ||
| 1761 | hasn't closed its end yet. Thus we do nothing but wait for a | ||
| 1762 | FIN from the other side. */ | ||
| 1763 | if(uip_len > 0) { | ||
| 1764 | uip_add_rcv_nxt(uip_len); | ||
| 1765 | } | ||
| 1766 | if(BUF->flags & TCP_FIN) { | ||
| 1767 | if(uip_flags & UIP_ACKDATA) { | ||
| 1768 | uip_connr->tcpstateflags = UIP_TIME_WAIT; | ||
| 1769 | uip_connr->timer = 0; | ||
| 1770 | uip_connr->len = 0; | ||
| 1771 | } else { | ||
| 1772 | uip_connr->tcpstateflags = UIP_CLOSING; | ||
| 1773 | } | ||
| 1774 | uip_add_rcv_nxt(1); | ||
| 1775 | uip_flags = UIP_CLOSE; | ||
| 1776 | UIP_APPCALL(); | ||
| 1777 | goto tcp_send_ack; | ||
| 1778 | } else if(uip_flags & UIP_ACKDATA) { | ||
| 1779 | uip_connr->tcpstateflags = UIP_FIN_WAIT_2; | ||
| 1780 | uip_connr->len = 0; | ||
| 1781 | goto drop; | ||
| 1782 | } | ||
| 1783 | if(uip_len > 0) { | ||
| 1784 | goto tcp_send_ack; | ||
| 1785 | } | ||
| 1786 | goto drop; | ||
| 1787 | |||
| 1788 | case UIP_FIN_WAIT_2: | ||
| 1789 | if(uip_len > 0) { | ||
| 1790 | uip_add_rcv_nxt(uip_len); | ||
| 1791 | } | ||
| 1792 | if(BUF->flags & TCP_FIN) { | ||
| 1793 | uip_connr->tcpstateflags = UIP_TIME_WAIT; | ||
| 1794 | uip_connr->timer = 0; | ||
| 1795 | uip_add_rcv_nxt(1); | ||
| 1796 | uip_flags = UIP_CLOSE; | ||
| 1797 | UIP_APPCALL(); | ||
| 1798 | goto tcp_send_ack; | ||
| 1799 | } | ||
| 1800 | if(uip_len > 0) { | ||
| 1801 | goto tcp_send_ack; | ||
| 1802 | } | ||
| 1803 | goto drop; | ||
| 1804 | |||
| 1805 | case UIP_TIME_WAIT: | ||
| 1806 | goto tcp_send_ack; | ||
| 1807 | |||
| 1808 | case UIP_CLOSING: | ||
| 1809 | if(uip_flags & UIP_ACKDATA) { | ||
| 1810 | uip_connr->tcpstateflags = UIP_TIME_WAIT; | ||
| 1811 | uip_connr->timer = 0; | ||
| 1812 | } | ||
| 1813 | } | ||
| 1814 | goto drop; | ||
| 1815 | |||
| 1816 | /* We jump here when we are ready to send the packet, and just want | ||
| 1817 | to set the appropriate TCP sequence numbers in the TCP header. */ | ||
| 1818 | tcp_send_ack: | ||
| 1819 | BUF->flags = TCP_ACK; | ||
| 1820 | |||
| 1821 | tcp_send_nodata: | ||
| 1822 | uip_len = UIP_IPTCPH_LEN; | ||
| 1823 | |||
| 1824 | tcp_send_noopts: | ||
| 1825 | BUF->tcpoffset = (UIP_TCPH_LEN / 4) << 4; | ||
| 1826 | |||
| 1827 | /* We're done with the input processing. We are now ready to send a | ||
| 1828 | reply. Our job is to fill in all the fields of the TCP and IP | ||
| 1829 | headers before calculating the checksum and finally send the | ||
| 1830 | packet. */ | ||
| 1831 | tcp_send: | ||
| 1832 | BUF->ackno[0] = uip_connr->rcv_nxt[0]; | ||
| 1833 | BUF->ackno[1] = uip_connr->rcv_nxt[1]; | ||
| 1834 | BUF->ackno[2] = uip_connr->rcv_nxt[2]; | ||
| 1835 | BUF->ackno[3] = uip_connr->rcv_nxt[3]; | ||
| 1836 | |||
| 1837 | BUF->seqno[0] = uip_connr->snd_nxt[0]; | ||
| 1838 | BUF->seqno[1] = uip_connr->snd_nxt[1]; | ||
| 1839 | BUF->seqno[2] = uip_connr->snd_nxt[2]; | ||
| 1840 | BUF->seqno[3] = uip_connr->snd_nxt[3]; | ||
| 1841 | |||
| 1842 | BUF->proto = UIP_PROTO_TCP; | ||
| 1843 | |||
| 1844 | BUF->srcport = uip_connr->lport; | ||
| 1845 | BUF->destport = uip_connr->rport; | ||
| 1846 | |||
| 1847 | uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr); | ||
| 1848 | uip_ipaddr_copy(&BUF->destipaddr, &uip_connr->ripaddr); | ||
| 1849 | |||
| 1850 | if(uip_connr->tcpstateflags & UIP_STOPPED) { | ||
| 1851 | /* If the connection has issued uip_stop(), we advertise a zero | ||
| 1852 | window so that the remote host will stop sending data. */ | ||
| 1853 | BUF->wnd[0] = BUF->wnd[1] = 0; | ||
| 1854 | } else { | ||
| 1855 | BUF->wnd[0] = ((UIP_RECEIVE_WINDOW) >> 8); | ||
| 1856 | BUF->wnd[1] = ((UIP_RECEIVE_WINDOW) & 0xff); | ||
| 1857 | } | ||
| 1858 | |||
| 1859 | tcp_send_noconn: | ||
| 1860 | BUF->ttl = UIP_TTL; | ||
| 1861 | #if UIP_CONF_IPV6 | ||
| 1862 | /* For IPv6, the IP length field does not include the IPv6 IP header | ||
| 1863 | length. */ | ||
| 1864 | BUF->len[0] = ((uip_len - UIP_IPH_LEN) >> 8); | ||
| 1865 | BUF->len[1] = ((uip_len - UIP_IPH_LEN) & 0xff); | ||
| 1866 | #else /* UIP_CONF_IPV6 */ | ||
| 1867 | BUF->len[0] = (uip_len >> 8); | ||
| 1868 | BUF->len[1] = (uip_len & 0xff); | ||
| 1869 | #endif /* UIP_CONF_IPV6 */ | ||
| 1870 | |||
| 1871 | BUF->urgp[0] = BUF->urgp[1] = 0; | ||
| 1872 | |||
| 1873 | /* Calculate TCP checksum. */ | ||
| 1874 | BUF->tcpchksum = 0; | ||
| 1875 | BUF->tcpchksum = ~(uip_tcpchksum()); | ||
| 1876 | |||
| 1877 | ip_send_nolen: | ||
| 1878 | #if UIP_CONF_IPV6 | ||
| 1879 | BUF->vtc = 0x60; | ||
| 1880 | BUF->tcflow = 0x00; | ||
| 1881 | BUF->flow = 0x00; | ||
| 1882 | #else /* UIP_CONF_IPV6 */ | ||
| 1883 | BUF->vhl = 0x45; | ||
| 1884 | BUF->tos = 0; | ||
| 1885 | BUF->ipoffset[0] = BUF->ipoffset[1] = 0; | ||
| 1886 | ++ipid; | ||
| 1887 | BUF->ipid[0] = ipid >> 8; | ||
| 1888 | BUF->ipid[1] = ipid & 0xff; | ||
| 1889 | /* Calculate IP checksum. */ | ||
| 1890 | BUF->ipchksum = 0; | ||
| 1891 | BUF->ipchksum = ~(uip_ipchksum()); | ||
| 1892 | DEBUG_PRINTF("uip ip_send_nolen: checksum 0x%04x\n", uip_ipchksum()); | ||
| 1893 | #endif /* UIP_CONF_IPV6 */ | ||
| 1894 | UIP_STAT(++uip_stat.tcp.sent); | ||
| 1895 | #if UIP_CONF_IPV6 | ||
| 1896 | send: | ||
| 1897 | #endif /* UIP_CONF_IPV6 */ | ||
| 1898 | DEBUG_PRINTF("Sending packet with length %d (%d)\n", uip_len, | ||
| 1899 | (BUF->len[0] << 8) | BUF->len[1]); | ||
| 1900 | |||
| 1901 | UIP_STAT(++uip_stat.ip.sent); | ||
| 1902 | /* Return and let the caller do the actual transmission. */ | ||
| 1903 | uip_flags = 0; | ||
| 1904 | return; | ||
| 1905 | |||
| 1906 | drop: | ||
| 1907 | uip_len = 0; | ||
| 1908 | uip_flags = 0; | ||
| 1909 | return; | ||
| 1910 | } | ||
| 1911 | /*---------------------------------------------------------------------------*/ | ||
| 1912 | u16_t | ||
| 1913 | htons(u16_t val) | ||
| 1914 | { | ||
| 1915 | return HTONS(val); | ||
| 1916 | } | ||
| 1917 | |||
| 1918 | u32_t | ||
| 1919 | htonl(u32_t val) | ||
| 1920 | { | ||
| 1921 | return HTONL(val); | ||
| 1922 | } | ||
| 1923 | /*---------------------------------------------------------------------------*/ | ||
| 1924 | void | ||
| 1925 | uip_send(const void *data, int len) | ||
| 1926 | { | ||
| 1927 | int copylen; | ||
| 1928 | #define MIN(a,b) ((a) < (b)? (a): (b)) | ||
| 1929 | copylen = MIN(len, UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN - | ||
| 1930 | (int)((char *)uip_sappdata - (char *)&uip_buf[UIP_LLH_LEN + UIP_TCPIP_HLEN])); | ||
| 1931 | if(copylen > 0) { | ||
| 1932 | uip_slen = copylen; | ||
| 1933 | if(data != uip_sappdata) { | ||
| 1934 | memcpy(uip_sappdata, (data), uip_slen); | ||
| 1935 | } | ||
| 1936 | } | ||
| 1937 | } | ||
| 1938 | /*---------------------------------------------------------------------------*/ | ||
| 1939 | /** @} */ | ||
| 1940 | #endif /* UIP_CONF_IPV6 */ | ||
| 1941 | |||
