diff options
Diffstat (limited to 'lib/lufa/Projects/Webserver/Lib/uip')
| -rw-r--r-- | lib/lufa/Projects/Webserver/Lib/uip/clock.c | 37 | ||||
| -rw-r--r-- | lib/lufa/Projects/Webserver/Lib/uip/clock.h | 13 | ||||
| -rw-r--r-- | lib/lufa/Projects/Webserver/Lib/uip/timer.c | 128 | ||||
| -rw-r--r-- | lib/lufa/Projects/Webserver/Lib/uip/timer.h | 87 | ||||
| -rw-r--r-- | lib/lufa/Projects/Webserver/Lib/uip/uip-split.c | 151 | ||||
| -rw-r--r-- | lib/lufa/Projects/Webserver/Lib/uip/uip-split.h | 104 | ||||
| -rw-r--r-- | lib/lufa/Projects/Webserver/Lib/uip/uip.c | 1941 | ||||
| -rw-r--r-- | lib/lufa/Projects/Webserver/Lib/uip/uip.h | 2130 | ||||
| -rw-r--r-- | lib/lufa/Projects/Webserver/Lib/uip/uip_arp.c | 432 | ||||
| -rw-r--r-- | lib/lufa/Projects/Webserver/Lib/uip/uip_arp.h | 146 | ||||
| -rw-r--r-- | lib/lufa/Projects/Webserver/Lib/uip/uipopt.h | 740 |
11 files changed, 0 insertions, 5909 deletions
diff --git a/lib/lufa/Projects/Webserver/Lib/uip/clock.c b/lib/lufa/Projects/Webserver/Lib/uip/clock.c deleted file mode 100644 index e71f7209d..000000000 --- a/lib/lufa/Projects/Webserver/Lib/uip/clock.c +++ /dev/null | |||
| @@ -1,37 +0,0 @@ | |||
| 1 | #include <stdint.h> | ||
| 2 | #include <stdlib.h> | ||
| 3 | #include <stdio.h> | ||
| 4 | |||
| 5 | #include <LUFA/Common/Common.h> | ||
| 6 | |||
| 7 | #include "clock.h" | ||
| 8 | |||
| 9 | //Counted time | ||
| 10 | volatile clock_time_t clock_datetime = 0; | ||
| 11 | |||
| 12 | //Overflow interrupt | ||
| 13 | ISR(TIMER1_COMPA_vect, ISR_BLOCK) | ||
| 14 | { | ||
| 15 | clock_datetime += 1; | ||
| 16 | } | ||
| 17 | |||
| 18 | //Initialise the clock | ||
| 19 | void clock_init() | ||
| 20 | { | ||
| 21 | OCR1A = (((F_CPU / 1024) / 100) - 1); | ||
| 22 | TCCR1B = ((1 << WGM12) | (1 << CS12) | (1 << CS10)); | ||
| 23 | TIMSK1 = (1 << OCIE1A); | ||
| 24 | } | ||
| 25 | |||
| 26 | //Return time | ||
| 27 | clock_time_t clock_time() | ||
| 28 | { | ||
| 29 | clock_time_t time; | ||
| 30 | |||
| 31 | GlobalInterruptDisable(); | ||
| 32 | time = clock_datetime; | ||
| 33 | GlobalInterruptEnable(); | ||
| 34 | |||
| 35 | return time; | ||
| 36 | } | ||
| 37 | |||
diff --git a/lib/lufa/Projects/Webserver/Lib/uip/clock.h b/lib/lufa/Projects/Webserver/Lib/uip/clock.h deleted file mode 100644 index bbfa4ac0e..000000000 --- a/lib/lufa/Projects/Webserver/Lib/uip/clock.h +++ /dev/null | |||
| @@ -1,13 +0,0 @@ | |||
| 1 | #ifndef __CLOCK_ARCH_H__ | ||
| 2 | #define __CLOCK_ARCH_H__ | ||
| 3 | |||
| 4 | #include <stdint.h> | ||
| 5 | #include <util/atomic.h> | ||
| 6 | |||
| 7 | typedef uint16_t clock_time_t; | ||
| 8 | #define CLOCK_SECOND 100 | ||
| 9 | void clock_init(void); | ||
| 10 | clock_time_t clock_time(void); | ||
| 11 | |||
| 12 | #endif /* __CLOCK_ARCH_H__ */ | ||
| 13 | |||
diff --git a/lib/lufa/Projects/Webserver/Lib/uip/timer.c b/lib/lufa/Projects/Webserver/Lib/uip/timer.c deleted file mode 100644 index eae06f43b..000000000 --- a/lib/lufa/Projects/Webserver/Lib/uip/timer.c +++ /dev/null | |||
| @@ -1,128 +0,0 @@ | |||
| 1 | /** | ||
| 2 | * \addtogroup timer | ||
| 3 | * @{ | ||
| 4 | */ | ||
| 5 | |||
| 6 | /** | ||
| 7 | * \file | ||
| 8 | * Timer library implementation. | ||
| 9 | * \author | ||
| 10 | * Adam Dunkels <adam@sics.se> | ||
| 11 | */ | ||
| 12 | |||
| 13 | /* | ||
| 14 | * Copyright (c) 2004, Swedish Institute of Computer Science. | ||
| 15 | * All rights reserved. | ||
| 16 | * | ||
| 17 | * Redistribution and use in source and binary forms, with or without | ||
| 18 | * modification, are permitted provided that the following conditions | ||
| 19 | * are met: | ||
| 20 | * 1. Redistributions of source code must retain the above copyright | ||
| 21 | * notice, this list of conditions and the following disclaimer. | ||
| 22 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 23 | * notice, this list of conditions and the following disclaimer in the | ||
| 24 | * documentation and/or other materials provided with the distribution. | ||
| 25 | * 3. Neither the name of the Institute nor the names of its contributors | ||
| 26 | * may be used to endorse or promote products derived from this software | ||
| 27 | * without specific prior written permission. | ||
| 28 | * | ||
| 29 | * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND | ||
| 30 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 31 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 32 | * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE | ||
| 33 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 34 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
| 35 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 36 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
| 37 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
| 38 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
| 39 | * SUCH DAMAGE. | ||
| 40 | * | ||
| 41 | * This file is part of the uIP TCP/IP stack | ||
| 42 | * | ||
| 43 | * Author: Adam Dunkels <adam@sics.se> | ||
| 44 | * | ||
| 45 | * $Id: timer.c,v 1.2 2006/06/12 08:00:30 adam Exp $ | ||
| 46 | */ | ||
| 47 | |||
| 48 | #include "clock.h" | ||
| 49 | #include "timer.h" | ||
| 50 | |||
| 51 | /*---------------------------------------------------------------------------*/ | ||
| 52 | /** | ||
| 53 | * Set a timer. | ||
| 54 | * | ||
| 55 | * This function is used to set a timer for a time sometime in the | ||
| 56 | * future. The function timer_expired() will evaluate to true after | ||
| 57 | * the timer has expired. | ||
| 58 | * | ||
| 59 | * \param t A pointer to the timer | ||
| 60 | * \param interval The interval before the timer expires. | ||
| 61 | * | ||
| 62 | */ | ||
| 63 | void | ||
| 64 | timer_set(struct timer *t, clock_time_t interval) | ||
| 65 | { | ||
| 66 | t->interval = interval; | ||
| 67 | t->start = clock_time(); | ||
| 68 | } | ||
| 69 | /*---------------------------------------------------------------------------*/ | ||
| 70 | /** | ||
| 71 | * Reset the timer with the same interval. | ||
| 72 | * | ||
| 73 | * This function resets the timer with the same interval that was | ||
| 74 | * given to the timer_set() function. The start point of the interval | ||
| 75 | * is the exact time that the timer last expired. Therefore, this | ||
| 76 | * function will cause the timer to be stable over time, unlike the | ||
| 77 | * timer_restart() function. | ||
| 78 | * | ||
| 79 | * \param t A pointer to the timer. | ||
| 80 | * | ||
| 81 | * \sa timer_restart() | ||
| 82 | */ | ||
| 83 | void | ||
| 84 | timer_reset(struct timer *t) | ||
| 85 | { | ||
| 86 | t->start += t->interval; | ||
| 87 | } | ||
| 88 | /*---------------------------------------------------------------------------*/ | ||
| 89 | /** | ||
| 90 | * Restart the timer from the current point in time | ||
| 91 | * | ||
| 92 | * This function restarts a timer with the same interval that was | ||
| 93 | * given to the timer_set() function. The timer will start at the | ||
| 94 | * current time. | ||
| 95 | * | ||
| 96 | * \note A periodic timer will drift if this function is used to reset | ||
| 97 | * it. For periodic timers, use the timer_reset() function instead. | ||
| 98 | * | ||
| 99 | * \param t A pointer to the timer. | ||
| 100 | * | ||
| 101 | * \sa timer_reset() | ||
| 102 | */ | ||
| 103 | void | ||
| 104 | timer_restart(struct timer *t) | ||
| 105 | { | ||
| 106 | t->start = clock_time(); | ||
| 107 | } | ||
| 108 | /*---------------------------------------------------------------------------*/ | ||
| 109 | /** | ||
| 110 | * Check if a timer has expired. | ||
| 111 | * | ||
| 112 | * This function tests if a timer has expired and returns true or | ||
| 113 | * false depending on its status. | ||
| 114 | * | ||
| 115 | * \param t A pointer to the timer | ||
| 116 | * | ||
| 117 | * \return Non-zero if the timer has expired, zero otherwise. | ||
| 118 | * | ||
| 119 | */ | ||
| 120 | int | ||
| 121 | timer_expired(struct timer *t) | ||
| 122 | { | ||
| 123 | return (clock_time_t)(clock_time() - t->start) >= (clock_time_t)t->interval; | ||
| 124 | } | ||
| 125 | /*---------------------------------------------------------------------------*/ | ||
| 126 | |||
| 127 | /** @} */ | ||
| 128 | |||
diff --git a/lib/lufa/Projects/Webserver/Lib/uip/timer.h b/lib/lufa/Projects/Webserver/Lib/uip/timer.h deleted file mode 100644 index 04917e4c5..000000000 --- a/lib/lufa/Projects/Webserver/Lib/uip/timer.h +++ /dev/null | |||
| @@ -1,87 +0,0 @@ | |||
| 1 | /** | ||
| 2 | * \defgroup timer Timer library | ||
| 3 | * | ||
| 4 | * The timer library provides functions for setting, resetting and | ||
| 5 | * restarting timers, and for checking if a timer has expired. An | ||
| 6 | * application must "manually" check if its timers have expired; this | ||
| 7 | * is not done automatically. | ||
| 8 | * | ||
| 9 | * A timer is declared as a \c struct \c timer and all access to the | ||
| 10 | * timer is made by a pointer to the declared timer. | ||
| 11 | * | ||
| 12 | * \note The timer library uses the \ref clock "Clock library" to | ||
| 13 | * measure time. Intervals should be specified in the format used by | ||
| 14 | * the clock library. | ||
| 15 | * | ||
| 16 | * @{ | ||
| 17 | */ | ||
| 18 | |||
| 19 | |||
| 20 | /** | ||
| 21 | * \file | ||
| 22 | * Timer library header file. | ||
| 23 | * \author | ||
| 24 | * Adam Dunkels <adam@sics.se> | ||
| 25 | */ | ||
| 26 | |||
| 27 | /* | ||
| 28 | * Copyright (c) 2004, Swedish Institute of Computer Science. | ||
| 29 | * All rights reserved. | ||
| 30 | * | ||
| 31 | * Redistribution and use in source and binary forms, with or without | ||
| 32 | * modification, are permitted provided that the following conditions | ||
| 33 | * are met: | ||
| 34 | * 1. Redistributions of source code must retain the above copyright | ||
| 35 | * notice, this list of conditions and the following disclaimer. | ||
| 36 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 37 | * notice, this list of conditions and the following disclaimer in the | ||
| 38 | * documentation and/or other materials provided with the distribution. | ||
| 39 | * 3. Neither the name of the Institute nor the names of its contributors | ||
| 40 | * may be used to endorse or promote products derived from this software | ||
| 41 | * without specific prior written permission. | ||
| 42 | * | ||
| 43 | * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND | ||
| 44 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 45 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 46 | * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE | ||
| 47 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 48 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
| 49 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 50 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
| 51 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
| 52 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
| 53 | * SUCH DAMAGE. | ||
| 54 | * | ||
| 55 | * This file is part of the uIP TCP/IP stack | ||
| 56 | * | ||
| 57 | * Author: Adam Dunkels <adam@sics.se> | ||
| 58 | * | ||
| 59 | * $Id: timer.h,v 1.3 2006/06/11 21:46:39 adam Exp $ | ||
| 60 | */ | ||
| 61 | #ifndef __TIMER_H__ | ||
| 62 | #define __TIMER_H__ | ||
| 63 | |||
| 64 | #include "clock.h" | ||
| 65 | |||
| 66 | /** | ||
| 67 | * A timer. | ||
| 68 | * | ||
| 69 | * This structure is used for declaring a timer. The timer must be set | ||
| 70 | * with timer_set() before it can be used. | ||
| 71 | * | ||
| 72 | * \hideinitializer | ||
| 73 | */ | ||
| 74 | struct timer { | ||
| 75 | clock_time_t start; | ||
| 76 | clock_time_t interval; | ||
| 77 | }; | ||
| 78 | |||
| 79 | void timer_set(struct timer *t, clock_time_t interval); | ||
| 80 | void timer_reset(struct timer *t); | ||
| 81 | void timer_restart(struct timer *t); | ||
| 82 | int timer_expired(struct timer *t); | ||
| 83 | |||
| 84 | #endif /* __TIMER_H__ */ | ||
| 85 | |||
| 86 | /** @} */ | ||
| 87 | |||
diff --git a/lib/lufa/Projects/Webserver/Lib/uip/uip-split.c b/lib/lufa/Projects/Webserver/Lib/uip/uip-split.c deleted file mode 100644 index 5222a05b6..000000000 --- a/lib/lufa/Projects/Webserver/Lib/uip/uip-split.c +++ /dev/null | |||
| @@ -1,151 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (c) 2004, Swedish Institute of Computer Science. | ||
| 3 | * All rights reserved. | ||
| 4 | * | ||
| 5 | * Redistribution and use in source and binary forms, with or without | ||
| 6 | * modification, are permitted provided that the following conditions | ||
| 7 | * are met: | ||
| 8 | * 1. Redistributions of source code must retain the above copyright | ||
| 9 | * notice, this list of conditions and the following disclaimer. | ||
| 10 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 11 | * notice, this list of conditions and the following disclaimer in the | ||
| 12 | * documentation and/or other materials provided with the distribution. | ||
| 13 | * 3. Neither the name of the Institute nor the names of its contributors | ||
| 14 | * may be used to endorse or promote products derived from this software | ||
| 15 | * without specific prior written permission. | ||
| 16 | * | ||
| 17 | * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND | ||
| 18 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 19 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 20 | * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE | ||
| 21 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 22 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
| 23 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 24 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
| 25 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
| 26 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
| 27 | * SUCH DAMAGE. | ||
| 28 | * | ||
| 29 | * This file is part of the Contiki operating system. | ||
| 30 | * | ||
| 31 | * Author: Adam Dunkels <adam@sics.se> | ||
| 32 | * | ||
| 33 | * $Id: uip-split.c,v 1.2 2008/10/14 13:39:12 julienabeille Exp $ | ||
| 34 | */ | ||
| 35 | |||
| 36 | #include "uip-split.h" | ||
| 37 | |||
| 38 | |||
| 39 | #define BUF ((struct uip_tcpip_hdr *)&uip_buf[UIP_LLH_LEN]) | ||
| 40 | |||
| 41 | /*-----------------------------------------------------------------------------*/ | ||
| 42 | void | ||
| 43 | uip_split_output(void) | ||
| 44 | { | ||
| 45 | #if UIP_TCP | ||
| 46 | u16_t tcplen, len1, len2; | ||
| 47 | |||
| 48 | /* We only try to split maximum sized TCP segments. */ | ||
| 49 | if(BUF->proto == UIP_PROTO_TCP && uip_len == UIP_BUFSIZE) { | ||
| 50 | |||
| 51 | tcplen = uip_len - UIP_TCPIP_HLEN - UIP_LLH_LEN; | ||
| 52 | /* Split the segment in two. If the original packet length was | ||
| 53 | odd, we make the second packet one byte larger. */ | ||
| 54 | len1 = len2 = tcplen / 2; | ||
| 55 | if(len1 + len2 < tcplen) { | ||
| 56 | ++len2; | ||
| 57 | } | ||
| 58 | |||
| 59 | /* Create the first packet. This is done by altering the length | ||
| 60 | field of the IP header and updating the checksums. */ | ||
| 61 | uip_len = len1 + UIP_TCPIP_HLEN + UIP_LLH_LEN; | ||
| 62 | #if UIP_CONF_IPV6 | ||
| 63 | /* For IPv6, the IP length field does not include the IPv6 IP header | ||
| 64 | length. */ | ||
| 65 | BUF->len[0] = ((uip_len - UIP_IPH_LEN) >> 8); | ||
| 66 | BUF->len[1] = ((uip_len - UIP_IPH_LEN) & 0xff); | ||
| 67 | #else /* UIP_CONF_IPV6 */ | ||
| 68 | BUF->len[0] = (uip_len - UIP_LLH_LEN) >> 8; | ||
| 69 | BUF->len[1] = (uip_len - UIP_LLH_LEN) & 0xff; | ||
| 70 | #endif /* UIP_CONF_IPV6 */ | ||
| 71 | |||
| 72 | /* Recalculate the TCP checksum. */ | ||
| 73 | BUF->tcpchksum = 0; | ||
| 74 | BUF->tcpchksum = ~(uip_tcpchksum()); | ||
| 75 | |||
| 76 | #if !UIP_CONF_IPV6 | ||
| 77 | /* Recalculate the IP checksum. */ | ||
| 78 | BUF->ipchksum = 0; | ||
| 79 | BUF->ipchksum = ~(uip_ipchksum()); | ||
| 80 | #endif /* UIP_CONF_IPV6 */ | ||
| 81 | |||
| 82 | /* Transmit the first packet. */ | ||
| 83 | #if UIP_CONF_IPV6 | ||
| 84 | tcpip_ipv6_output(); | ||
| 85 | #else | ||
| 86 | if (USB_CurrentMode == USB_MODE_Device) | ||
| 87 | RNDIS_Device_SendPacket(&Ethernet_RNDIS_Interface_Device, uip_buf, uip_len); | ||
| 88 | else | ||
| 89 | RNDIS_Host_SendPacket(&Ethernet_RNDIS_Interface_Host, uip_buf, uip_len); | ||
| 90 | #endif /* UIP_CONF_IPV6 */ | ||
| 91 | |||
| 92 | /* Now, create the second packet. To do this, it is not enough to | ||
| 93 | just alter the length field, but we must also update the TCP | ||
| 94 | sequence number and point the uip_appdata to a new place in | ||
| 95 | memory. This place is determined by the length of the first | ||
| 96 | packet (len1). */ | ||
| 97 | uip_len = len2 + UIP_TCPIP_HLEN + UIP_LLH_LEN; | ||
| 98 | #if UIP_CONF_IPV6 | ||
| 99 | /* For IPv6, the IP length field does not include the IPv6 IP header | ||
| 100 | length. */ | ||
| 101 | BUF->len[0] = ((uip_len - UIP_IPH_LEN) >> 8); | ||
| 102 | BUF->len[1] = ((uip_len - UIP_IPH_LEN) & 0xff); | ||
| 103 | #else /* UIP_CONF_IPV6 */ | ||
| 104 | BUF->len[0] = (uip_len - UIP_LLH_LEN) >> 8; | ||
| 105 | BUF->len[1] = (uip_len - UIP_LLH_LEN) & 0xff; | ||
| 106 | #endif /* UIP_CONF_IPV6 */ | ||
| 107 | |||
| 108 | memcpy(uip_appdata, (u8_t *)uip_appdata + len1, len2); | ||
| 109 | |||
| 110 | uip_add32(BUF->seqno, len1); | ||
| 111 | BUF->seqno[0] = uip_acc32[0]; | ||
| 112 | BUF->seqno[1] = uip_acc32[1]; | ||
| 113 | BUF->seqno[2] = uip_acc32[2]; | ||
| 114 | BUF->seqno[3] = uip_acc32[3]; | ||
| 115 | |||
| 116 | /* Recalculate the TCP checksum. */ | ||
| 117 | BUF->tcpchksum = 0; | ||
| 118 | BUF->tcpchksum = ~(uip_tcpchksum()); | ||
| 119 | |||
| 120 | #if !UIP_CONF_IPV6 | ||
| 121 | /* Recalculate the IP checksum. */ | ||
| 122 | BUF->ipchksum = 0; | ||
| 123 | BUF->ipchksum = ~(uip_ipchksum()); | ||
| 124 | #endif /* UIP_CONF_IPV6 */ | ||
| 125 | |||
| 126 | /* Transmit the second packet. */ | ||
| 127 | #if UIP_CONF_IPV6 | ||
| 128 | tcpip_ipv6_output(); | ||
| 129 | #else | ||
| 130 | if (USB_CurrentMode == USB_MODE_Device) | ||
| 131 | RNDIS_Device_SendPacket(&Ethernet_RNDIS_Interface_Device, uip_buf, uip_len); | ||
| 132 | else | ||
| 133 | RNDIS_Host_SendPacket(&Ethernet_RNDIS_Interface_Host, uip_buf, uip_len); | ||
| 134 | #endif /* UIP_CONF_IPV6 */ | ||
| 135 | return; | ||
| 136 | } | ||
| 137 | #endif /* UIP_TCP */ | ||
| 138 | |||
| 139 | /* uip_fw_output();*/ | ||
| 140 | #if UIP_CONF_IPV6 | ||
| 141 | tcpip_ipv6_output(); | ||
| 142 | #else | ||
| 143 | if (USB_CurrentMode == USB_MODE_Device) | ||
| 144 | RNDIS_Device_SendPacket(&Ethernet_RNDIS_Interface_Device, uip_buf, uip_len); | ||
| 145 | else | ||
| 146 | RNDIS_Host_SendPacket(&Ethernet_RNDIS_Interface_Host, uip_buf, uip_len); | ||
| 147 | #endif /* UIP_CONF_IPV6 */ | ||
| 148 | } | ||
| 149 | |||
| 150 | /*-----------------------------------------------------------------------------*/ | ||
| 151 | |||
diff --git a/lib/lufa/Projects/Webserver/Lib/uip/uip-split.h b/lib/lufa/Projects/Webserver/Lib/uip/uip-split.h deleted file mode 100644 index 0c768ce40..000000000 --- a/lib/lufa/Projects/Webserver/Lib/uip/uip-split.h +++ /dev/null | |||
| @@ -1,104 +0,0 @@ | |||
| 1 | /* | ||
| 2 | * Copyright (c) 2004, Swedish Institute of Computer Science. | ||
| 3 | * All rights reserved. | ||
| 4 | * | ||
| 5 | * Redistribution and use in source and binary forms, with or without | ||
| 6 | * modification, are permitted provided that the following conditions | ||
| 7 | * are met: | ||
| 8 | * 1. Redistributions of source code must retain the above copyright | ||
| 9 | * notice, this list of conditions and the following disclaimer. | ||
| 10 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 11 | * notice, this list of conditions and the following disclaimer in the | ||
| 12 | * documentation and/or other materials provided with the distribution. | ||
| 13 | * 3. Neither the name of the Institute nor the names of its contributors | ||
| 14 | * may be used to endorse or promote products derived from this software | ||
| 15 | * without specific prior written permission. | ||
| 16 | * | ||
| 17 | * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND | ||
| 18 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 19 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 20 | * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE | ||
| 21 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 22 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
| 23 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 24 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
| 25 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
| 26 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
| 27 | * SUCH DAMAGE. | ||
| 28 | * | ||
| 29 | * This file is part of the Contiki operating system. | ||
| 30 | * | ||
| 31 | * Author: Adam Dunkels <adam@sics.se> | ||
| 32 | * | ||
| 33 | * $Id: uip-split.h,v 1.1 2006/06/17 22:41:19 adamdunkels Exp $ | ||
| 34 | */ | ||
| 35 | /** | ||
| 36 | * \addtogroup uip | ||
| 37 | * @{ | ||
| 38 | */ | ||
| 39 | |||
| 40 | /** | ||
| 41 | * \defgroup uipsplit uIP TCP throughput booster hack | ||
| 42 | * @{ | ||
| 43 | * | ||
| 44 | * The basic uIP TCP implementation only allows each TCP connection to | ||
| 45 | * have a single TCP segment in flight at any given time. Because of | ||
| 46 | * the delayed ACK algorithm employed by most TCP receivers, uIP's | ||
| 47 | * limit on the amount of in-flight TCP segments seriously reduces the | ||
| 48 | * maximum achievable throughput for sending data from uIP. | ||
| 49 | * | ||
| 50 | * The uip-split module is a hack which tries to remedy this | ||
| 51 | * situation. By splitting maximum sized outgoing TCP segments into | ||
| 52 | * two, the delayed ACK algorithm is not invoked at TCP | ||
| 53 | * receivers. This improves the throughput when sending data from uIP | ||
| 54 | * by orders of magnitude. | ||
| 55 | * | ||
| 56 | * The uip-split module uses the uip-fw module (uIP IP packet | ||
| 57 | * forwarding) for sending packets. Therefore, the uip-fw module must | ||
| 58 | * be set up with the appropriate network interfaces for this module | ||
| 59 | * to work. | ||
| 60 | */ | ||
| 61 | |||
| 62 | |||
| 63 | /** | ||
| 64 | * \file | ||
| 65 | * Module for splitting outbound TCP segments in two to avoid the | ||
| 66 | * delayed ACK throughput degradation. | ||
| 67 | * \author | ||
| 68 | * Adam Dunkels <adam@sics.se> | ||
| 69 | * | ||
| 70 | */ | ||
| 71 | |||
| 72 | #ifndef __UIP_SPLIT_H__ | ||
| 73 | #define __UIP_SPLIT_H__ | ||
| 74 | |||
| 75 | #include <string.h> | ||
| 76 | #include <uip.h> | ||
| 77 | |||
| 78 | #include "../../USBHostMode.h" | ||
| 79 | |||
| 80 | #include <LUFA/Drivers/USB/USB.h> | ||
| 81 | |||
| 82 | /** | ||
| 83 | * Handle outgoing packets. | ||
| 84 | * | ||
| 85 | * This function inspects an outgoing packet in the uip_buf buffer and | ||
| 86 | * sends it out using the uip_fw_output() function. If the packet is a | ||
| 87 | * full-sized TCP segment it will be split into two segments and | ||
| 88 | * transmitted separately. This function should be called instead of | ||
| 89 | * the actual device driver output function, or the uip_fw_output() | ||
| 90 | * function. | ||
| 91 | * | ||
| 92 | * The headers of the outgoing packet is assumed to be in the uip_buf | ||
| 93 | * buffer and the payload is assumed to be wherever uip_appdata | ||
| 94 | * points. The length of the outgoing packet is assumed to be in the | ||
| 95 | * uip_len variable. | ||
| 96 | * | ||
| 97 | */ | ||
| 98 | void uip_split_output(void); | ||
| 99 | void uip_add32(u8_t *op32, u16_t op16); | ||
| 100 | #endif /* __UIP_SPLIT_H__ */ | ||
| 101 | |||
| 102 | /** @} */ | ||
| 103 | /** @} */ | ||
| 104 | |||
diff --git a/lib/lufa/Projects/Webserver/Lib/uip/uip.c b/lib/lufa/Projects/Webserver/Lib/uip/uip.c deleted file mode 100644 index fead75775..000000000 --- a/lib/lufa/Projects/Webserver/Lib/uip/uip.c +++ /dev/null | |||
| @@ -1,1941 +0,0 @@ | |||
| 1 | #define DEBUG_PRINTF(...) /*printf(__VA_ARGS__)*/ | ||
| 2 | |||
| 3 | /** | ||
| 4 | * \addtogroup uip | ||
| 5 | * @{ | ||
| 6 | */ | ||
| 7 | |||
| 8 | /** | ||
| 9 | * \file | ||
| 10 | * The uIP TCP/IP stack code. | ||
| 11 | * \author Adam Dunkels <adam@dunkels.com> | ||
| 12 | */ | ||
| 13 | |||
| 14 | /* | ||
| 15 | * Copyright (c) 2001-2003, Adam Dunkels. | ||
| 16 | * All rights reserved. | ||
| 17 | * | ||
| 18 | * Redistribution and use in source and binary forms, with or without | ||
| 19 | * modification, are permitted provided that the following conditions | ||
| 20 | * are met: | ||
| 21 | * 1. Redistributions of source code must retain the above copyright | ||
| 22 | * notice, this list of conditions and the following disclaimer. | ||
| 23 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 24 | * notice, this list of conditions and the following disclaimer in the | ||
| 25 | * documentation and/or other materials provided with the distribution. | ||
| 26 | * 3. The name of the author may not be used to endorse or promote | ||
| 27 | * products derived from this software without specific prior | ||
| 28 | * written permission. | ||
| 29 | * | ||
| 30 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS | ||
| 31 | * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | ||
| 32 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 33 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | ||
| 34 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 35 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE | ||
| 36 | * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | ||
| 37 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | ||
| 38 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | ||
| 39 | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
| 40 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 41 | * | ||
| 42 | * This file is part of the uIP TCP/IP stack. | ||
| 43 | * | ||
| 44 | * $Id: uip.c,v 1.15 2008/10/15 08:08:32 adamdunkels Exp $ | ||
| 45 | * | ||
| 46 | */ | ||
| 47 | |||
| 48 | /* | ||
| 49 | * uIP is a small implementation of the IP, UDP and TCP protocols (as | ||
| 50 | * well as some basic ICMP stuff). The implementation couples the IP, | ||
| 51 | * UDP, TCP and the application layers very tightly. To keep the size | ||
| 52 | * of the compiled code down, this code frequently uses the goto | ||
| 53 | * statement. While it would be possible to break the uip_process() | ||
| 54 | * function into many smaller functions, this would increase the code | ||
| 55 | * size because of the overhead of parameter passing and the fact that | ||
| 56 | * the optimizer would not be as efficient. | ||
| 57 | * | ||
| 58 | * The principle is that we have a small buffer, called the uip_buf, | ||
| 59 | * in which the device driver puts an incoming packet. The TCP/IP | ||
| 60 | * stack parses the headers in the packet, and calls the | ||
| 61 | * application. If the remote host has sent data to the application, | ||
| 62 | * this data is present in the uip_buf and the application read the | ||
| 63 | * data from there. It is up to the application to put this data into | ||
| 64 | * a byte stream if needed. The application will not be fed with data | ||
| 65 | * that is out of sequence. | ||
| 66 | * | ||
| 67 | * If the application whishes to send data to the peer, it should put | ||
| 68 | * its data into the uip_buf. The uip_appdata pointer points to the | ||
| 69 | * first available byte. The TCP/IP stack will calculate the | ||
| 70 | * checksums, and fill in the necessary header fields and finally send | ||
| 71 | * the packet back to the peer. | ||
| 72 | */ | ||
| 73 | |||
| 74 | #include "uip.h" | ||
| 75 | #include "uipopt.h" | ||
| 76 | #include "uip_arp.h" | ||
| 77 | |||
| 78 | #if !UIP_CONF_IPV6 /* If UIP_CONF_IPV6 is defined, we compile the | ||
| 79 | uip6.c file instead of this one. Therefore | ||
| 80 | this #ifndef removes the entire compilation | ||
| 81 | output of the uip.c file */ | ||
| 82 | |||
| 83 | |||
| 84 | #if UIP_CONF_IPV6 | ||
| 85 | #include "net/uip-neighbor.h" | ||
| 86 | #endif /* UIP_CONF_IPV6 */ | ||
| 87 | |||
| 88 | #include <string.h> | ||
| 89 | |||
| 90 | /*---------------------------------------------------------------------------*/ | ||
| 91 | /* Variable definitions. */ | ||
| 92 | |||
| 93 | |||
| 94 | /* The IP address of this host. If it is defined to be fixed (by | ||
| 95 | setting UIP_FIXEDADDR to 1 in uipopt.h), the address is set | ||
| 96 | here. Otherwise, the address */ | ||
| 97 | #if UIP_FIXEDADDR > 0 | ||
| 98 | const uip_ipaddr_t uip_hostaddr = | ||
| 99 | { UIP_IPADDR0, UIP_IPADDR1, UIP_IPADDR2, UIP_IPADDR3 }; | ||
| 100 | const uip_ipaddr_t uip_draddr = | ||
| 101 | { UIP_DRIPADDR0, UIP_DRIPADDR1, UIP_DRIPADDR2, UIP_DRIPADDR3 }; | ||
| 102 | const uip_ipaddr_t uip_netmask = | ||
| 103 | { UIP_NETMASK0, UIP_NETMASK1, UIP_NETMASK2, UIP_NETMASK3 }; | ||
| 104 | #else | ||
| 105 | uip_ipaddr_t uip_hostaddr, uip_draddr, uip_netmask; | ||
| 106 | #endif /* UIP_FIXEDADDR */ | ||
| 107 | |||
| 108 | const uip_ipaddr_t uip_broadcast_addr = | ||
| 109 | #if UIP_CONF_IPV6 | ||
| 110 | { { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | ||
| 111 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } }; | ||
| 112 | #else /* UIP_CONF_IPV6 */ | ||
| 113 | { { 0xff, 0xff, 0xff, 0xff } }; | ||
| 114 | #endif /* UIP_CONF_IPV6 */ | ||
| 115 | const uip_ipaddr_t uip_all_zeroes_addr = { { 0x0, /* rest is 0 */ } }; | ||
| 116 | |||
| 117 | #if UIP_FIXEDETHADDR | ||
| 118 | const struct uip_eth_addr uip_ethaddr = {{UIP_ETHADDR0, | ||
| 119 | UIP_ETHADDR1, | ||
| 120 | UIP_ETHADDR2, | ||
| 121 | UIP_ETHADDR3, | ||
| 122 | UIP_ETHADDR4, | ||
| 123 | UIP_ETHADDR5}}; | ||
| 124 | #else | ||
| 125 | struct uip_eth_addr uip_ethaddr = {{0,0,0,0,0,0}}; | ||
| 126 | #endif | ||
| 127 | |||
| 128 | #ifndef UIP_CONF_EXTERNAL_BUFFER | ||
| 129 | u8_t uip_buf[UIP_BUFSIZE + 2]; /* The packet buffer that contains | ||
| 130 | incoming packets. */ | ||
| 131 | #endif /* UIP_CONF_EXTERNAL_BUFFER */ | ||
| 132 | |||
| 133 | void *uip_appdata; /* The uip_appdata pointer points to | ||
| 134 | application data. */ | ||
| 135 | void *uip_sappdata; /* The uip_appdata pointer points to | ||
| 136 | the application data which is to | ||
| 137 | be sent. */ | ||
| 138 | #if UIP_URGDATA > 0 | ||
| 139 | void *uip_urgdata; /* The uip_urgdata pointer points to | ||
| 140 | urgent data (out-of-band data), if | ||
| 141 | present. */ | ||
| 142 | u16_t uip_urglen, uip_surglen; | ||
| 143 | #endif /* UIP_URGDATA > 0 */ | ||
| 144 | |||
| 145 | u16_t uip_len, uip_slen; | ||
| 146 | /* The uip_len is either 8 or 16 bits, | ||
| 147 | depending on the maximum packet | ||
| 148 | size. */ | ||
| 149 | |||
| 150 | u8_t uip_flags; /* The uip_flags variable is used for | ||
| 151 | communication between the TCP/IP stack | ||
| 152 | and the application program. */ | ||
| 153 | struct uip_conn *uip_conn; /* uip_conn always points to the current | ||
| 154 | connection. */ | ||
| 155 | |||
| 156 | struct uip_conn uip_conns[UIP_CONNS]; | ||
| 157 | /* The uip_conns array holds all TCP | ||
| 158 | connections. */ | ||
| 159 | u16_t uip_listenports[UIP_LISTENPORTS]; | ||
| 160 | /* The uip_listenports list all currently | ||
| 161 | listening ports. */ | ||
| 162 | #if UIP_UDP | ||
| 163 | struct uip_udp_conn *uip_udp_conn; | ||
| 164 | struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS]; | ||
| 165 | #endif /* UIP_UDP */ | ||
| 166 | |||
| 167 | static u16_t ipid; /* Ths ipid variable is an increasing | ||
| 168 | number that is used for the IP ID | ||
| 169 | field. */ | ||
| 170 | |||
| 171 | void uip_setipid(u16_t id) { ipid = id; } | ||
| 172 | |||
| 173 | static u8_t iss[4]; /* The iss variable is used for the TCP | ||
| 174 | initial sequence number. */ | ||
| 175 | |||
| 176 | #if UIP_ACTIVE_OPEN | ||
| 177 | static u16_t lastport; /* Keeps track of the last port used for | ||
| 178 | a new connection. */ | ||
| 179 | #endif /* UIP_ACTIVE_OPEN */ | ||
| 180 | |||
| 181 | /* Temporary variables. */ | ||
| 182 | u8_t uip_acc32[4]; | ||
| 183 | static u8_t c, opt; | ||
| 184 | static u16_t tmp16; | ||
| 185 | |||
| 186 | /* Structures and definitions. */ | ||
| 187 | #define TCP_FIN 0x01 | ||
| 188 | #define TCP_SYN 0x02 | ||
| 189 | #define TCP_RST 0x04 | ||
| 190 | #define TCP_PSH 0x08 | ||
| 191 | #define TCP_ACK 0x10 | ||
| 192 | #define TCP_URG 0x20 | ||
| 193 | #define TCP_CTL 0x3f | ||
| 194 | |||
| 195 | #define TCP_OPT_END 0 /* End of TCP options list */ | ||
| 196 | #define TCP_OPT_NOOP 1 /* "No-operation" TCP option */ | ||
| 197 | #define TCP_OPT_MSS 2 /* Maximum segment size TCP option */ | ||
| 198 | |||
| 199 | #define TCP_OPT_MSS_LEN 4 /* Length of TCP MSS option. */ | ||
| 200 | |||
| 201 | #define ICMP_ECHO_REPLY 0 | ||
| 202 | #define ICMP_ECHO 8 | ||
| 203 | |||
| 204 | #define ICMP_DEST_UNREACHABLE 3 | ||
| 205 | #define ICMP_PORT_UNREACHABLE 3 | ||
| 206 | |||
| 207 | #define ICMP6_ECHO_REPLY 129 | ||
| 208 | #define ICMP6_ECHO 128 | ||
| 209 | #define ICMP6_NEIGHBOR_SOLICITATION 135 | ||
| 210 | #define ICMP6_NEIGHBOR_ADVERTISEMENT 136 | ||
| 211 | |||
| 212 | #define ICMP6_FLAG_S (1 << 6) | ||
| 213 | |||
| 214 | #define ICMP6_OPTION_SOURCE_LINK_ADDRESS 1 | ||
| 215 | #define ICMP6_OPTION_TARGET_LINK_ADDRESS 2 | ||
| 216 | |||
| 217 | |||
| 218 | /* Macros. */ | ||
| 219 | #define BUF ((struct uip_tcpip_hdr *)&uip_buf[UIP_LLH_LEN]) | ||
| 220 | #define FBUF ((struct uip_tcpip_hdr *)&uip_reassbuf[0]) | ||
| 221 | #define ICMPBUF ((struct uip_icmpip_hdr *)&uip_buf[UIP_LLH_LEN]) | ||
| 222 | #define UDPBUF ((struct uip_udpip_hdr *)&uip_buf[UIP_LLH_LEN]) | ||
| 223 | |||
| 224 | |||
| 225 | #if UIP_STATISTICS == 1 | ||
| 226 | struct uip_stats uip_stat; | ||
| 227 | #define UIP_STAT(s) s | ||
| 228 | #else | ||
| 229 | #define UIP_STAT(s) | ||
| 230 | #endif /* UIP_STATISTICS == 1 */ | ||
| 231 | |||
| 232 | #if UIP_LOGGING == 1 | ||
| 233 | #include <stdio.h> | ||
| 234 | void uip_log(char *msg); | ||
| 235 | #define UIP_LOG(m) uip_log(m) | ||
| 236 | #else | ||
| 237 | #define UIP_LOG(m) | ||
| 238 | #endif /* UIP_LOGGING == 1 */ | ||
| 239 | |||
| 240 | #if ! UIP_ARCH_ADD32 | ||
| 241 | void | ||
| 242 | uip_add32(u8_t *op32, u16_t op16) | ||
| 243 | { | ||
| 244 | uip_acc32[3] = op32[3] + (op16 & 0xff); | ||
| 245 | uip_acc32[2] = op32[2] + (op16 >> 8); | ||
| 246 | uip_acc32[1] = op32[1]; | ||
| 247 | uip_acc32[0] = op32[0]; | ||
| 248 | |||
| 249 | if(uip_acc32[2] < (op16 >> 8)) { | ||
| 250 | ++uip_acc32[1]; | ||
| 251 | if(uip_acc32[1] == 0) { | ||
| 252 | ++uip_acc32[0]; | ||
| 253 | } | ||
| 254 | } | ||
| 255 | |||
| 256 | |||
| 257 | if(uip_acc32[3] < (op16 & 0xff)) { | ||
| 258 | ++uip_acc32[2]; | ||
| 259 | if(uip_acc32[2] == 0) { | ||
| 260 | ++uip_acc32[1]; | ||
| 261 | if(uip_acc32[1] == 0) { | ||
| 262 | ++uip_acc32[0]; | ||
| 263 | } | ||
| 264 | } | ||
| 265 | } | ||
| 266 | } | ||
| 267 | |||
| 268 | #endif /* UIP_ARCH_ADD32 */ | ||
| 269 | |||
| 270 | #if ! UIP_ARCH_CHKSUM | ||
| 271 | /*---------------------------------------------------------------------------*/ | ||
| 272 | static u16_t | ||
| 273 | chksum(u16_t sum, const u8_t *data, u16_t len) | ||
| 274 | { | ||
| 275 | u16_t t; | ||
| 276 | const u8_t *dataptr; | ||
| 277 | const u8_t *last_byte; | ||
| 278 | |||
| 279 | dataptr = data; | ||
| 280 | last_byte = data + len - 1; | ||
| 281 | |||
| 282 | while(dataptr < last_byte) { /* At least two more bytes */ | ||
| 283 | t = (dataptr[0] << 8) + dataptr[1]; | ||
| 284 | sum += t; | ||
| 285 | if(sum < t) { | ||
| 286 | sum++; /* carry */ | ||
| 287 | } | ||
| 288 | dataptr += 2; | ||
| 289 | } | ||
| 290 | |||
| 291 | if(dataptr == last_byte) { | ||
| 292 | t = (dataptr[0] << 8) + 0; | ||
| 293 | sum += t; | ||
| 294 | if(sum < t) { | ||
| 295 | sum++; /* carry */ | ||
| 296 | } | ||
| 297 | } | ||
| 298 | |||
| 299 | /* Return sum in host byte order. */ | ||
| 300 | return sum; | ||
| 301 | } | ||
| 302 | /*---------------------------------------------------------------------------*/ | ||
| 303 | u16_t | ||
| 304 | uip_chksum(u16_t *data, u16_t len) | ||
| 305 | { | ||
| 306 | return htons(chksum(0, (u8_t *)data, len)); | ||
| 307 | } | ||
| 308 | /*---------------------------------------------------------------------------*/ | ||
| 309 | #ifndef UIP_ARCH_IPCHKSUM | ||
| 310 | u16_t | ||
| 311 | uip_ipchksum(void) | ||
| 312 | { | ||
| 313 | u16_t sum; | ||
| 314 | |||
| 315 | sum = chksum(0, &uip_buf[UIP_LLH_LEN], UIP_IPH_LEN); | ||
| 316 | DEBUG_PRINTF("uip_ipchksum: sum 0x%04x\n", sum); | ||
| 317 | return (sum == 0) ? 0xffff : htons(sum); | ||
| 318 | } | ||
| 319 | #endif | ||
| 320 | /*---------------------------------------------------------------------------*/ | ||
| 321 | static u16_t | ||
| 322 | upper_layer_chksum(u8_t proto) | ||
| 323 | { | ||
| 324 | u16_t upper_layer_len; | ||
| 325 | u16_t sum; | ||
| 326 | |||
| 327 | #if UIP_CONF_IPV6 | ||
| 328 | upper_layer_len = (((u16_t)(BUF->len[0]) << 8) + BUF->len[1]); | ||
| 329 | #else /* UIP_CONF_IPV6 */ | ||
| 330 | upper_layer_len = (((u16_t)(BUF->len[0]) << 8) + BUF->len[1]) - UIP_IPH_LEN; | ||
| 331 | #endif /* UIP_CONF_IPV6 */ | ||
| 332 | |||
| 333 | /* First sum pseudo-header. */ | ||
| 334 | |||
| 335 | /* IP protocol and length fields. This addition cannot carry. */ | ||
| 336 | sum = upper_layer_len + proto; | ||
| 337 | /* Sum IP source and destination addresses. */ | ||
| 338 | sum = chksum(sum, (u8_t *)&BUF->srcipaddr, 2 * sizeof(uip_ipaddr_t)); | ||
| 339 | |||
| 340 | /* Sum TCP header and data. */ | ||
| 341 | sum = chksum(sum, &uip_buf[UIP_IPH_LEN + UIP_LLH_LEN], | ||
| 342 | upper_layer_len); | ||
| 343 | |||
| 344 | return (sum == 0) ? 0xffff : htons(sum); | ||
| 345 | } | ||
| 346 | /*---------------------------------------------------------------------------*/ | ||
| 347 | #if UIP_CONF_IPV6 | ||
| 348 | u16_t | ||
| 349 | uip_icmp6chksum(void) | ||
| 350 | { | ||
| 351 | return upper_layer_chksum(UIP_PROTO_ICMP6); | ||
| 352 | |||
| 353 | } | ||
| 354 | #endif /* UIP_CONF_IPV6 */ | ||
| 355 | /*---------------------------------------------------------------------------*/ | ||
| 356 | u16_t | ||
| 357 | uip_tcpchksum(void) | ||
| 358 | { | ||
| 359 | return upper_layer_chksum(UIP_PROTO_TCP); | ||
| 360 | } | ||
| 361 | /*---------------------------------------------------------------------------*/ | ||
| 362 | #if UIP_UDP_CHECKSUMS | ||
| 363 | u16_t | ||
| 364 | uip_udpchksum(void) | ||
| 365 | { | ||
| 366 | return upper_layer_chksum(UIP_PROTO_UDP); | ||
| 367 | } | ||
| 368 | #endif /* UIP_UDP_CHECKSUMS */ | ||
| 369 | #endif /* UIP_ARCH_CHKSUM */ | ||
| 370 | /*---------------------------------------------------------------------------*/ | ||
| 371 | void | ||
| 372 | uip_init(void) | ||
| 373 | { | ||
| 374 | for(c = 0; c < UIP_LISTENPORTS; ++c) { | ||
| 375 | uip_listenports[c] = 0; | ||
| 376 | } | ||
| 377 | for(c = 0; c < UIP_CONNS; ++c) { | ||
| 378 | uip_conns[c].tcpstateflags = UIP_CLOSED; | ||
| 379 | } | ||
| 380 | #if UIP_ACTIVE_OPEN | ||
| 381 | lastport = 1024; | ||
| 382 | #endif /* UIP_ACTIVE_OPEN */ | ||
| 383 | |||
| 384 | #if UIP_UDP | ||
| 385 | for(c = 0; c < UIP_UDP_CONNS; ++c) { | ||
| 386 | uip_udp_conns[c].lport = 0; | ||
| 387 | } | ||
| 388 | #endif /* UIP_UDP */ | ||
| 389 | |||
| 390 | |||
| 391 | /* IPv4 initialization. */ | ||
| 392 | #if UIP_FIXEDADDR == 0 | ||
| 393 | /* uip_hostaddr[0] = uip_hostaddr[1] = 0;*/ | ||
| 394 | #endif /* UIP_FIXEDADDR */ | ||
| 395 | |||
| 396 | } | ||
| 397 | /*---------------------------------------------------------------------------*/ | ||
| 398 | #if UIP_ACTIVE_OPEN | ||
| 399 | struct uip_conn * | ||
| 400 | uip_connect(uip_ipaddr_t *ripaddr, u16_t rport) | ||
| 401 | { | ||
| 402 | register struct uip_conn *conn, *cconn; | ||
| 403 | |||
| 404 | /* Find an unused local port. */ | ||
| 405 | again: | ||
| 406 | ++lastport; | ||
| 407 | |||
| 408 | if(lastport >= 32000) { | ||
| 409 | lastport = 4096; | ||
| 410 | } | ||
| 411 | |||
| 412 | /* Check if this port is already in use, and if so try to find | ||
| 413 | another one. */ | ||
| 414 | for(c = 0; c < UIP_CONNS; ++c) { | ||
| 415 | conn = &uip_conns[c]; | ||
| 416 | if(conn->tcpstateflags != UIP_CLOSED && | ||
| 417 | conn->lport == htons(lastport)) { | ||
| 418 | goto again; | ||
| 419 | } | ||
| 420 | } | ||
| 421 | |||
| 422 | conn = 0; | ||
| 423 | for(c = 0; c < UIP_CONNS; ++c) { | ||
| 424 | cconn = &uip_conns[c]; | ||
| 425 | if(cconn->tcpstateflags == UIP_CLOSED) { | ||
| 426 | conn = cconn; | ||
| 427 | break; | ||
| 428 | } | ||
| 429 | if(cconn->tcpstateflags == UIP_TIME_WAIT) { | ||
| 430 | if(conn == 0 || | ||
| 431 | cconn->timer > conn->timer) { | ||
| 432 | conn = cconn; | ||
| 433 | } | ||
| 434 | } | ||
| 435 | } | ||
| 436 | |||
| 437 | if(conn == 0) { | ||
| 438 | return 0; | ||
| 439 | } | ||
| 440 | |||
| 441 | conn->tcpstateflags = UIP_SYN_SENT; | ||
| 442 | |||
| 443 | conn->snd_nxt[0] = iss[0]; | ||
| 444 | conn->snd_nxt[1] = iss[1]; | ||
| 445 | conn->snd_nxt[2] = iss[2]; | ||
| 446 | conn->snd_nxt[3] = iss[3]; | ||
| 447 | |||
| 448 | conn->initialmss = conn->mss = UIP_TCP_MSS; | ||
| 449 | |||
| 450 | conn->len = 1; /* TCP length of the SYN is one. */ | ||
| 451 | conn->nrtx = 0; | ||
| 452 | conn->timer = 1; /* Send the SYN next time around. */ | ||
| 453 | conn->rto = UIP_RTO; | ||
| 454 | conn->sa = 0; | ||
| 455 | conn->sv = 16; /* Initial value of the RTT variance. */ | ||
| 456 | conn->lport = htons(lastport); | ||
| 457 | conn->rport = rport; | ||
| 458 | uip_ipaddr_copy(&conn->ripaddr, ripaddr); | ||
| 459 | |||
| 460 | return conn; | ||
| 461 | } | ||
| 462 | #endif /* UIP_ACTIVE_OPEN */ | ||
| 463 | /*---------------------------------------------------------------------------*/ | ||
| 464 | #if UIP_UDP | ||
| 465 | struct uip_udp_conn * | ||
| 466 | uip_udp_new(const uip_ipaddr_t *ripaddr, u16_t rport) | ||
| 467 | { | ||
| 468 | register struct uip_udp_conn *conn; | ||
| 469 | |||
| 470 | /* Find an unused local port. */ | ||
| 471 | again: | ||
| 472 | ++lastport; | ||
| 473 | |||
| 474 | if(lastport >= 32000) { | ||
| 475 | lastport = 4096; | ||
| 476 | } | ||
| 477 | |||
| 478 | for(c = 0; c < UIP_UDP_CONNS; ++c) { | ||
| 479 | if(uip_udp_conns[c].lport == htons(lastport)) { | ||
| 480 | goto again; | ||
| 481 | } | ||
| 482 | } | ||
| 483 | |||
| 484 | |||
| 485 | conn = 0; | ||
| 486 | for(c = 0; c < UIP_UDP_CONNS; ++c) { | ||
| 487 | if(uip_udp_conns[c].lport == 0) { | ||
| 488 | conn = &uip_udp_conns[c]; | ||
| 489 | break; | ||
| 490 | } | ||
| 491 | } | ||
| 492 | |||
| 493 | if(conn == 0) { | ||
| 494 | return 0; | ||
| 495 | } | ||
| 496 | |||
| 497 | conn->lport = HTONS(lastport); | ||
| 498 | conn->rport = rport; | ||
| 499 | if(ripaddr == NULL) { | ||
| 500 | memset(&conn->ripaddr, 0, sizeof(uip_ipaddr_t)); | ||
| 501 | } else { | ||
| 502 | uip_ipaddr_copy(&conn->ripaddr, ripaddr); | ||
| 503 | } | ||
| 504 | conn->ttl = UIP_TTL; | ||
| 505 | |||
| 506 | return conn; | ||
| 507 | } | ||
| 508 | #endif /* UIP_UDP */ | ||
| 509 | /*---------------------------------------------------------------------------*/ | ||
| 510 | void | ||
| 511 | uip_unlisten(u16_t port) | ||
| 512 | { | ||
| 513 | for(c = 0; c < UIP_LISTENPORTS; ++c) { | ||
| 514 | if(uip_listenports[c] == port) { | ||
| 515 | uip_listenports[c] = 0; | ||
| 516 | return; | ||
| 517 | } | ||
| 518 | } | ||
| 519 | } | ||
| 520 | /*---------------------------------------------------------------------------*/ | ||
| 521 | void | ||
| 522 | uip_listen(u16_t port) | ||
| 523 | { | ||
| 524 | for(c = 0; c < UIP_LISTENPORTS; ++c) { | ||
| 525 | if(uip_listenports[c] == 0) { | ||
| 526 | uip_listenports[c] = port; | ||
| 527 | return; | ||
| 528 | } | ||
| 529 | } | ||
| 530 | } | ||
| 531 | /*---------------------------------------------------------------------------*/ | ||
| 532 | /* XXX: IP fragment reassembly: not well-tested. */ | ||
| 533 | |||
| 534 | #if UIP_REASSEMBLY && !UIP_CONF_IPV6 | ||
| 535 | #define UIP_REASS_BUFSIZE (UIP_BUFSIZE - UIP_LLH_LEN) | ||
| 536 | static u8_t uip_reassbuf[UIP_REASS_BUFSIZE]; | ||
| 537 | static u8_t uip_reassbitmap[UIP_REASS_BUFSIZE / (8 * 8)]; | ||
| 538 | static const u8_t bitmap_bits[8] = {0xff, 0x7f, 0x3f, 0x1f, | ||
| 539 | 0x0f, 0x07, 0x03, 0x01}; | ||
| 540 | static u16_t uip_reasslen; | ||
| 541 | static u8_t uip_reassflags; | ||
| 542 | #define UIP_REASS_FLAG_LASTFRAG 0x01 | ||
| 543 | static u8_t uip_reasstmr; | ||
| 544 | |||
| 545 | #define IP_MF 0x20 | ||
| 546 | |||
| 547 | static u8_t | ||
| 548 | uip_reass(void) | ||
| 549 | { | ||
| 550 | u16_t offset, len; | ||
| 551 | u16_t i; | ||
| 552 | |||
| 553 | /* If ip_reasstmr is zero, no packet is present in the buffer, so we | ||
| 554 | write the IP header of the fragment into the reassembly | ||
| 555 | buffer. The timer is updated with the maximum age. */ | ||
| 556 | if(uip_reasstmr == 0) { | ||
| 557 | memcpy(uip_reassbuf, &BUF->vhl, UIP_IPH_LEN); | ||
| 558 | uip_reasstmr = UIP_REASS_MAXAGE; | ||
| 559 | uip_reassflags = 0; | ||
| 560 | /* Clear the bitmap. */ | ||
| 561 | memset(uip_reassbitmap, 0, sizeof(uip_reassbitmap)); | ||
| 562 | } | ||
| 563 | |||
| 564 | /* Check if the incoming fragment matches the one currently present | ||
| 565 | in the reasembly buffer. If so, we proceed with copying the | ||
| 566 | fragment into the buffer. */ | ||
| 567 | if(BUF->srcipaddr[0] == FBUF->srcipaddr[0] && | ||
| 568 | BUF->srcipaddr[1] == FBUF->srcipaddr[1] && | ||
| 569 | BUF->destipaddr[0] == FBUF->destipaddr[0] && | ||
| 570 | BUF->destipaddr[1] == FBUF->destipaddr[1] && | ||
| 571 | BUF->ipid[0] == FBUF->ipid[0] && | ||
| 572 | BUF->ipid[1] == FBUF->ipid[1]) { | ||
| 573 | |||
| 574 | len = (BUF->len[0] << 8) + BUF->len[1] - (BUF->vhl & 0x0f) * 4; | ||
| 575 | offset = (((BUF->ipoffset[0] & 0x3f) << 8) + BUF->ipoffset[1]) * 8; | ||
| 576 | |||
| 577 | /* If the offset or the offset + fragment length overflows the | ||
| 578 | reassembly buffer, we discard the entire packet. */ | ||
| 579 | if(offset > UIP_REASS_BUFSIZE || | ||
| 580 | offset + len > UIP_REASS_BUFSIZE) { | ||
| 581 | uip_reasstmr = 0; | ||
| 582 | goto nullreturn; | ||
| 583 | } | ||
| 584 | |||
| 585 | /* Copy the fragment into the reassembly buffer, at the right | ||
| 586 | offset. */ | ||
| 587 | memcpy(&uip_reassbuf[UIP_IPH_LEN + offset], | ||
| 588 | (char *)BUF + (int)((BUF->vhl & 0x0f) * 4), | ||
| 589 | len); | ||
| 590 | |||
| 591 | /* Update the bitmap. */ | ||
| 592 | if(offset / (8 * 8) == (offset + len) / (8 * 8)) { | ||
| 593 | /* If the two endpoints are in the same byte, we only update | ||
| 594 | that byte. */ | ||
| 595 | |||
| 596 | uip_reassbitmap[offset / (8 * 8)] |= | ||
| 597 | bitmap_bits[(offset / 8 ) & 7] & | ||
| 598 | ~bitmap_bits[((offset + len) / 8 ) & 7]; | ||
| 599 | } else { | ||
| 600 | /* If the two endpoints are in different bytes, we update the | ||
| 601 | bytes in the endpoints and fill the stuff in-between with | ||
| 602 | 0xff. */ | ||
| 603 | uip_reassbitmap[offset / (8 * 8)] |= | ||
| 604 | bitmap_bits[(offset / 8 ) & 7]; | ||
| 605 | for(i = 1 + offset / (8 * 8); i < (offset + len) / (8 * 8); ++i) { | ||
| 606 | uip_reassbitmap[i] = 0xff; | ||
| 607 | } | ||
| 608 | uip_reassbitmap[(offset + len) / (8 * 8)] |= | ||
| 609 | ~bitmap_bits[((offset + len) / 8 ) & 7]; | ||
| 610 | } | ||
| 611 | |||
| 612 | /* If this fragment has the More Fragments flag set to zero, we | ||
| 613 | know that this is the last fragment, so we can calculate the | ||
| 614 | size of the entire packet. We also set the | ||
| 615 | IP_REASS_FLAG_LASTFRAG flag to indicate that we have received | ||
| 616 | the final fragment. */ | ||
| 617 | |||
| 618 | if((BUF->ipoffset[0] & IP_MF) == 0) { | ||
| 619 | uip_reassflags |= UIP_REASS_FLAG_LASTFRAG; | ||
| 620 | uip_reasslen = offset + len; | ||
| 621 | } | ||
| 622 | |||
| 623 | /* Finally, we check if we have a full packet in the buffer. We do | ||
| 624 | this by checking if we have the last fragment and if all bits | ||
| 625 | in the bitmap are set. */ | ||
| 626 | if(uip_reassflags & UIP_REASS_FLAG_LASTFRAG) { | ||
| 627 | /* Check all bytes up to and including all but the last byte in | ||
| 628 | the bitmap. */ | ||
| 629 | for(i = 0; i < uip_reasslen / (8 * 8) - 1; ++i) { | ||
| 630 | if(uip_reassbitmap[i] != 0xff) { | ||
| 631 | goto nullreturn; | ||
| 632 | } | ||
| 633 | } | ||
| 634 | /* Check the last byte in the bitmap. It should contain just the | ||
| 635 | right amount of bits. */ | ||
| 636 | if(uip_reassbitmap[uip_reasslen / (8 * 8)] != | ||
| 637 | (u8_t)~bitmap_bits[uip_reasslen / 8 & 7]) { | ||
| 638 | goto nullreturn; | ||
| 639 | } | ||
| 640 | |||
| 641 | /* If we have come this far, we have a full packet in the | ||
| 642 | buffer, so we allocate a pbuf and copy the packet into it. We | ||
| 643 | also reset the timer. */ | ||
| 644 | uip_reasstmr = 0; | ||
| 645 | memcpy(BUF, FBUF, uip_reasslen); | ||
| 646 | |||
| 647 | /* Pretend to be a "normal" (i.e., not fragmented) IP packet | ||
| 648 | from now on. */ | ||
| 649 | BUF->ipoffset[0] = BUF->ipoffset[1] = 0; | ||
| 650 | BUF->len[0] = uip_reasslen >> 8; | ||
| 651 | BUF->len[1] = uip_reasslen & 0xff; | ||
| 652 | BUF->ipchksum = 0; | ||
| 653 | BUF->ipchksum = ~(uip_ipchksum()); | ||
| 654 | |||
| 655 | return uip_reasslen; | ||
| 656 | } | ||
| 657 | } | ||
| 658 | |||
| 659 | nullreturn: | ||
| 660 | return 0; | ||
| 661 | } | ||
| 662 | #endif /* UIP_REASSEMBLY */ | ||
| 663 | /*---------------------------------------------------------------------------*/ | ||
| 664 | static void | ||
| 665 | uip_add_rcv_nxt(u16_t n) | ||
| 666 | { | ||
| 667 | uip_add32(uip_conn->rcv_nxt, n); | ||
| 668 | uip_conn->rcv_nxt[0] = uip_acc32[0]; | ||
| 669 | uip_conn->rcv_nxt[1] = uip_acc32[1]; | ||
| 670 | uip_conn->rcv_nxt[2] = uip_acc32[2]; | ||
| 671 | uip_conn->rcv_nxt[3] = uip_acc32[3]; | ||
| 672 | } | ||
| 673 | /*---------------------------------------------------------------------------*/ | ||
| 674 | void | ||
| 675 | uip_process(u8_t flag) | ||
| 676 | { | ||
| 677 | register struct uip_conn *uip_connr = uip_conn; | ||
| 678 | |||
| 679 | #if UIP_UDP | ||
| 680 | if(flag == UIP_UDP_SEND_CONN) { | ||
| 681 | goto udp_send; | ||
| 682 | } | ||
| 683 | #endif /* UIP_UDP */ | ||
| 684 | |||
| 685 | uip_sappdata = uip_appdata = &uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN]; | ||
| 686 | |||
| 687 | /* Check if we were invoked because of a poll request for a | ||
| 688 | particular connection. */ | ||
| 689 | if(flag == UIP_POLL_REQUEST) { | ||
| 690 | if((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED && | ||
| 691 | !uip_outstanding(uip_connr)) { | ||
| 692 | uip_len = uip_slen = 0; | ||
| 693 | uip_flags = UIP_POLL; | ||
| 694 | UIP_APPCALL(); | ||
| 695 | goto appsend; | ||
| 696 | } | ||
| 697 | goto drop; | ||
| 698 | |||
| 699 | /* Check if we were invoked because of the periodic timer firing. */ | ||
| 700 | } else if(flag == UIP_TIMER) { | ||
| 701 | #if UIP_REASSEMBLY | ||
| 702 | if(uip_reasstmr != 0) { | ||
| 703 | --uip_reasstmr; | ||
| 704 | } | ||
| 705 | #endif /* UIP_REASSEMBLY */ | ||
| 706 | /* Increase the initial sequence number. */ | ||
| 707 | if(++iss[3] == 0) { | ||
| 708 | if(++iss[2] == 0) { | ||
| 709 | if(++iss[1] == 0) { | ||
| 710 | ++iss[0]; | ||
| 711 | } | ||
| 712 | } | ||
| 713 | } | ||
| 714 | |||
| 715 | /* Reset the length variables. */ | ||
| 716 | uip_len = 0; | ||
| 717 | uip_slen = 0; | ||
| 718 | |||
| 719 | /* Check if the connection is in a state in which we simply wait | ||
| 720 | for the connection to time out. If so, we increase the | ||
| 721 | connection's timer and remove the connection if it times | ||
| 722 | out. */ | ||
| 723 | if(uip_connr->tcpstateflags == UIP_TIME_WAIT || | ||
| 724 | uip_connr->tcpstateflags == UIP_FIN_WAIT_2) { | ||
| 725 | ++(uip_connr->timer); | ||
| 726 | if(uip_connr->timer == UIP_TIME_WAIT_TIMEOUT) { | ||
| 727 | uip_connr->tcpstateflags = UIP_CLOSED; | ||
| 728 | } | ||
| 729 | } else if(uip_connr->tcpstateflags != UIP_CLOSED) { | ||
| 730 | /* If the connection has outstanding data, we increase the | ||
| 731 | connection's timer and see if it has reached the RTO value | ||
| 732 | in which case we retransmit. */ | ||
| 733 | if(uip_outstanding(uip_connr)) { | ||
| 734 | if(uip_connr->timer-- == 0) { | ||
| 735 | if(uip_connr->nrtx == UIP_MAXRTX || | ||
| 736 | ((uip_connr->tcpstateflags == UIP_SYN_SENT || | ||
| 737 | uip_connr->tcpstateflags == UIP_SYN_RCVD) && | ||
| 738 | uip_connr->nrtx == UIP_MAXSYNRTX)) { | ||
| 739 | uip_connr->tcpstateflags = UIP_CLOSED; | ||
| 740 | |||
| 741 | /* We call UIP_APPCALL() with uip_flags set to | ||
| 742 | UIP_TIMEDOUT to inform the application that the | ||
| 743 | connection has timed out. */ | ||
| 744 | uip_flags = UIP_TIMEDOUT; | ||
| 745 | UIP_APPCALL(); | ||
| 746 | |||
| 747 | /* We also send a reset packet to the remote host. */ | ||
| 748 | BUF->flags = TCP_RST | TCP_ACK; | ||
| 749 | goto tcp_send_nodata; | ||
| 750 | } | ||
| 751 | |||
| 752 | /* Exponential back-off. */ | ||
| 753 | uip_connr->timer = UIP_RTO << (uip_connr->nrtx > 4? | ||
| 754 | 4: | ||
| 755 | uip_connr->nrtx); | ||
| 756 | ++(uip_connr->nrtx); | ||
| 757 | |||
| 758 | /* Ok, so we need to retransmit. We do this differently | ||
| 759 | depending on which state we are in. In ESTABLISHED, we | ||
| 760 | call upon the application so that it may prepare the | ||
| 761 | data for the retransmit. In SYN_RCVD, we resend the | ||
| 762 | SYNACK that we sent earlier and in LAST_ACK we have to | ||
| 763 | retransmit our FINACK. */ | ||
| 764 | UIP_STAT(++uip_stat.tcp.rexmit); | ||
| 765 | switch(uip_connr->tcpstateflags & UIP_TS_MASK) { | ||
| 766 | case UIP_SYN_RCVD: | ||
| 767 | /* In the SYN_RCVD state, we should retransmit our | ||
| 768 | SYNACK. */ | ||
| 769 | goto tcp_send_synack; | ||
| 770 | |||
| 771 | #if UIP_ACTIVE_OPEN | ||
| 772 | case UIP_SYN_SENT: | ||
| 773 | /* In the SYN_SENT state, we retransmit out SYN. */ | ||
| 774 | BUF->flags = 0; | ||
| 775 | goto tcp_send_syn; | ||
| 776 | #endif /* UIP_ACTIVE_OPEN */ | ||
| 777 | |||
| 778 | case UIP_ESTABLISHED: | ||
| 779 | /* In the ESTABLISHED state, we call upon the application | ||
| 780 | to do the actual retransmit after which we jump into | ||
| 781 | the code for sending out the packet (the apprexmit | ||
| 782 | label). */ | ||
| 783 | uip_flags = UIP_REXMIT; | ||
| 784 | UIP_APPCALL(); | ||
| 785 | goto apprexmit; | ||
| 786 | |||
| 787 | case UIP_FIN_WAIT_1: | ||
| 788 | case UIP_CLOSING: | ||
| 789 | case UIP_LAST_ACK: | ||
| 790 | /* In all these states we should retransmit a FINACK. */ | ||
| 791 | goto tcp_send_finack; | ||
| 792 | |||
| 793 | } | ||
| 794 | } | ||
| 795 | } else if((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED) { | ||
| 796 | /* If there was no need for a retransmission, we poll the | ||
| 797 | application for new data. */ | ||
| 798 | uip_len = uip_slen = 0; | ||
| 799 | uip_flags = UIP_POLL; | ||
| 800 | UIP_APPCALL(); | ||
| 801 | goto appsend; | ||
| 802 | } | ||
| 803 | } | ||
| 804 | goto drop; | ||
| 805 | } | ||
| 806 | #if UIP_UDP | ||
| 807 | if(flag == UIP_UDP_TIMER) { | ||
| 808 | if(uip_udp_conn->lport != 0) { | ||
| 809 | uip_conn = NULL; | ||
| 810 | uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN]; | ||
| 811 | uip_len = uip_slen = 0; | ||
| 812 | uip_flags = UIP_POLL; | ||
| 813 | UIP_UDP_APPCALL(); | ||
| 814 | goto udp_send; | ||
| 815 | } else { | ||
| 816 | goto drop; | ||
| 817 | } | ||
| 818 | } | ||
| 819 | #endif | ||
| 820 | |||
| 821 | /* This is where the input processing starts. */ | ||
| 822 | UIP_STAT(++uip_stat.ip.recv); | ||
| 823 | |||
| 824 | /* Start of IP input header processing code. */ | ||
| 825 | |||
| 826 | #if UIP_CONF_IPV6 | ||
| 827 | /* Check validity of the IP header. */ | ||
| 828 | if((BUF->vtc & 0xf0) != 0x60) { /* IP version and header length. */ | ||
| 829 | UIP_STAT(++uip_stat.ip.drop); | ||
| 830 | UIP_STAT(++uip_stat.ip.vhlerr); | ||
| 831 | UIP_LOG("ipv6: invalid version."); | ||
| 832 | goto drop; | ||
| 833 | } | ||
| 834 | #else /* UIP_CONF_IPV6 */ | ||
| 835 | /* Check validity of the IP header. */ | ||
| 836 | if(BUF->vhl != 0x45) { /* IP version and header length. */ | ||
| 837 | UIP_STAT(++uip_stat.ip.drop); | ||
| 838 | UIP_STAT(++uip_stat.ip.vhlerr); | ||
| 839 | UIP_LOG("ip: invalid version or header length."); | ||
| 840 | goto drop; | ||
| 841 | } | ||
| 842 | #endif /* UIP_CONF_IPV6 */ | ||
| 843 | |||
| 844 | /* Check the size of the packet. If the size reported to us in | ||
| 845 | uip_len is smaller the size reported in the IP header, we assume | ||
| 846 | that the packet has been corrupted in transit. If the size of | ||
| 847 | uip_len is larger than the size reported in the IP packet header, | ||
| 848 | the packet has been padded and we set uip_len to the correct | ||
| 849 | value.. */ | ||
| 850 | |||
| 851 | if((BUF->len[0] << 8) + BUF->len[1] <= uip_len) { | ||
| 852 | uip_len = (BUF->len[0] << 8) + BUF->len[1]; | ||
| 853 | #if UIP_CONF_IPV6 | ||
| 854 | uip_len += 40; /* The length reported in the IPv6 header is the | ||
| 855 | length of the payload that follows the | ||
| 856 | header. However, uIP uses the uip_len variable | ||
| 857 | for holding the size of the entire packet, | ||
| 858 | including the IP header. For IPv4 this is not a | ||
| 859 | problem as the length field in the IPv4 header | ||
| 860 | contains the length of the entire packet. But | ||
| 861 | for IPv6 we need to add the size of the IPv6 | ||
| 862 | header (40 bytes). */ | ||
| 863 | #endif /* UIP_CONF_IPV6 */ | ||
| 864 | } else { | ||
| 865 | UIP_LOG("ip: packet shorter than reported in IP header."); | ||
| 866 | goto drop; | ||
| 867 | } | ||
| 868 | |||
| 869 | #if !UIP_CONF_IPV6 | ||
| 870 | /* Check the fragment flag. */ | ||
| 871 | if((BUF->ipoffset[0] & 0x3f) != 0 || | ||
| 872 | BUF->ipoffset[1] != 0) { | ||
| 873 | #if UIP_REASSEMBLY | ||
| 874 | uip_len = uip_reass(); | ||
| 875 | if(uip_len == 0) { | ||
| 876 | goto drop; | ||
| 877 | } | ||
| 878 | #else /* UIP_REASSEMBLY */ | ||
| 879 | UIP_STAT(++uip_stat.ip.drop); | ||
| 880 | UIP_STAT(++uip_stat.ip.fragerr); | ||
| 881 | UIP_LOG("ip: fragment dropped."); | ||
| 882 | goto drop; | ||
| 883 | #endif /* UIP_REASSEMBLY */ | ||
| 884 | } | ||
| 885 | #endif /* UIP_CONF_IPV6 */ | ||
| 886 | |||
| 887 | if(uip_ipaddr_cmp(&uip_hostaddr, &uip_all_zeroes_addr)) { | ||
| 888 | /* If we are configured to use ping IP address configuration and | ||
| 889 | hasn't been assigned an IP address yet, we accept all ICMP | ||
| 890 | packets. */ | ||
| 891 | #if UIP_PINGADDRCONF && !UIP_CONF_IPV6 | ||
| 892 | if(BUF->proto == UIP_PROTO_ICMP) { | ||
| 893 | UIP_LOG("ip: possible ping config packet received."); | ||
| 894 | goto icmp_input; | ||
| 895 | } else { | ||
| 896 | UIP_LOG("ip: packet dropped since no address assigned."); | ||
| 897 | goto drop; | ||
| 898 | } | ||
| 899 | #endif /* UIP_PINGADDRCONF */ | ||
| 900 | |||
| 901 | } else { | ||
| 902 | /* If IP broadcast support is configured, we check for a broadcast | ||
| 903 | UDP packet, which may be destined to us. */ | ||
| 904 | #if UIP_BROADCAST | ||
| 905 | DEBUG_PRINTF("UDP IP checksum 0x%04x\n", uip_ipchksum()); | ||
| 906 | if(BUF->proto == UIP_PROTO_UDP && | ||
| 907 | uip_ipaddr_cmp(&BUF->destipaddr, &uip_broadcast_addr)) | ||
| 908 | { | ||
| 909 | if (uip_ipaddr_cmp(&BUF->srcipaddr, &uip_all_zeroes_addr)) | ||
| 910 | uip_ipaddr_copy(&BUF->srcipaddr, &uip_broadcast_addr); | ||
| 911 | |||
| 912 | goto udp_input; | ||
| 913 | } | ||
| 914 | #endif /* UIP_BROADCAST */ | ||
| 915 | |||
| 916 | /* Check if the packet is destined for our IP address. */ | ||
| 917 | #if !UIP_CONF_IPV6 | ||
| 918 | if(!uip_ipaddr_cmp(&BUF->destipaddr, &uip_hostaddr)) { | ||
| 919 | UIP_STAT(++uip_stat.ip.drop); | ||
| 920 | goto drop; | ||
| 921 | } | ||
| 922 | #else /* UIP_CONF_IPV6 */ | ||
| 923 | /* For IPv6, packet reception is a little trickier as we need to | ||
| 924 | make sure that we listen to certain multicast addresses (all | ||
| 925 | hosts multicast address, and the solicited-node multicast | ||
| 926 | address) as well. However, we will cheat here and accept all | ||
| 927 | multicast packets that are sent to the ff02::/16 addresses. */ | ||
| 928 | if(!uip_ipaddr_cmp(&BUF->destipaddr, &uip_hostaddr) && | ||
| 929 | BUF->destipaddr.u16[0] != HTONS(0xff02)) { | ||
| 930 | UIP_STAT(++uip_stat.ip.drop); | ||
| 931 | goto drop; | ||
| 932 | } | ||
| 933 | #endif /* UIP_CONF_IPV6 */ | ||
| 934 | } | ||
| 935 | |||
| 936 | #if !UIP_CONF_IPV6 | ||
| 937 | if(uip_ipchksum() != 0xffff) { /* Compute and check the IP header | ||
| 938 | checksum. */ | ||
| 939 | UIP_STAT(++uip_stat.ip.drop); | ||
| 940 | UIP_STAT(++uip_stat.ip.chkerr); | ||
| 941 | UIP_LOG("ip: bad checksum."); | ||
| 942 | goto drop; | ||
| 943 | } | ||
| 944 | #endif /* UIP_CONF_IPV6 */ | ||
| 945 | |||
| 946 | if(BUF->proto == UIP_PROTO_TCP) { /* Check for TCP packet. If so, | ||
| 947 | proceed with TCP input | ||
| 948 | processing. */ | ||
| 949 | goto tcp_input; | ||
| 950 | } | ||
| 951 | |||
| 952 | #if UIP_UDP | ||
| 953 | if(BUF->proto == UIP_PROTO_UDP) { | ||
| 954 | goto udp_input; | ||
| 955 | } | ||
| 956 | #endif /* UIP_UDP */ | ||
| 957 | |||
| 958 | #if !UIP_CONF_IPV6 | ||
| 959 | /* ICMPv4 processing code follows. */ | ||
| 960 | if(BUF->proto != UIP_PROTO_ICMP) { /* We only allow ICMP packets from | ||
| 961 | here. */ | ||
| 962 | UIP_STAT(++uip_stat.ip.drop); | ||
| 963 | UIP_STAT(++uip_stat.ip.protoerr); | ||
| 964 | UIP_LOG("ip: neither tcp nor icmp."); | ||
| 965 | goto drop; | ||
| 966 | } | ||
| 967 | |||
| 968 | #if UIP_PINGADDRCONF | ||
| 969 | icmp_input: | ||
| 970 | #endif /* UIP_PINGADDRCONF */ | ||
| 971 | UIP_STAT(++uip_stat.icmp.recv); | ||
| 972 | |||
| 973 | /* ICMP echo (i.e., ping) processing. This is simple, we only change | ||
| 974 | the ICMP type from ECHO to ECHO_REPLY and adjust the ICMP | ||
| 975 | checksum before we return the packet. */ | ||
| 976 | if(ICMPBUF->type != ICMP_ECHO) { | ||
| 977 | UIP_STAT(++uip_stat.icmp.drop); | ||
| 978 | UIP_STAT(++uip_stat.icmp.typeerr); | ||
| 979 | UIP_LOG("icmp: not icmp echo."); | ||
| 980 | goto drop; | ||
| 981 | } | ||
| 982 | |||
| 983 | /* If we are configured to use ping IP address assignment, we use | ||
| 984 | the destination IP address of this ping packet and assign it to | ||
| 985 | yourself. */ | ||
| 986 | #if UIP_PINGADDRCONF | ||
| 987 | if(uip_ipaddr_cmp(&uip_hostaddr, &uip_all_zeroes_addr)) { | ||
| 988 | uip_hostaddr = BUF->destipaddr; | ||
| 989 | } | ||
| 990 | #endif /* UIP_PINGADDRCONF */ | ||
| 991 | |||
| 992 | ICMPBUF->type = ICMP_ECHO_REPLY; | ||
| 993 | |||
| 994 | if(ICMPBUF->icmpchksum >= HTONS(0xffff - (ICMP_ECHO << 8))) { | ||
| 995 | ICMPBUF->icmpchksum += HTONS(ICMP_ECHO << 8) + 1; | ||
| 996 | } else { | ||
| 997 | ICMPBUF->icmpchksum += HTONS(ICMP_ECHO << 8); | ||
| 998 | } | ||
| 999 | |||
| 1000 | /* Swap IP addresses. */ | ||
| 1001 | uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr); | ||
| 1002 | uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr); | ||
| 1003 | |||
| 1004 | UIP_STAT(++uip_stat.icmp.sent); | ||
| 1005 | BUF->ttl = UIP_TTL; | ||
| 1006 | goto ip_send_nolen; | ||
| 1007 | |||
| 1008 | /* End of IPv4 input header processing code. */ | ||
| 1009 | #else /* !UIP_CONF_IPV6 */ | ||
| 1010 | |||
| 1011 | /* This is IPv6 ICMPv6 processing code. */ | ||
| 1012 | DEBUG_PRINTF("icmp6_input: length %d\n", uip_len); | ||
| 1013 | |||
| 1014 | if(BUF->proto != UIP_PROTO_ICMP6) { /* We only allow ICMPv6 packets from | ||
| 1015 | here. */ | ||
| 1016 | UIP_STAT(++uip_stat.ip.drop); | ||
| 1017 | UIP_STAT(++uip_stat.ip.protoerr); | ||
| 1018 | UIP_LOG("ip: neither tcp nor icmp6."); | ||
| 1019 | goto drop; | ||
| 1020 | } | ||
| 1021 | |||
| 1022 | UIP_STAT(++uip_stat.icmp.recv); | ||
| 1023 | |||
| 1024 | /* If we get a neighbor solicitation for our address we should send | ||
| 1025 | a neighbor advertisement message back. */ | ||
| 1026 | if(ICMPBUF->type == ICMP6_NEIGHBOR_SOLICITATION) { | ||
| 1027 | if(uip_ipaddr_cmp(&ICMPBUF->icmp6data, &uip_hostaddr)) { | ||
| 1028 | |||
| 1029 | if(ICMPBUF->options[0] == ICMP6_OPTION_SOURCE_LINK_ADDRESS) { | ||
| 1030 | /* Save the sender's address in our neighbor list. */ | ||
| 1031 | uip_neighbor_add(&ICMPBUF->srcipaddr, &(ICMPBUF->options[2])); | ||
| 1032 | } | ||
| 1033 | |||
| 1034 | /* We should now send a neighbor advertisement back to where the | ||
| 1035 | neighbor solicitation came from. */ | ||
| 1036 | ICMPBUF->type = ICMP6_NEIGHBOR_ADVERTISEMENT; | ||
| 1037 | ICMPBUF->flags = ICMP6_FLAG_S; /* Solicited flag. */ | ||
| 1038 | |||
| 1039 | ICMPBUF->reserved1 = ICMPBUF->reserved2 = ICMPBUF->reserved3 = 0; | ||
| 1040 | |||
| 1041 | uip_ipaddr_copy(&ICMPBUF->destipaddr, &ICMPBUF->srcipaddr); | ||
| 1042 | uip_ipaddr_copy(&ICMPBUF->srcipaddr, &uip_hostaddr); | ||
| 1043 | ICMPBUF->options[0] = ICMP6_OPTION_TARGET_LINK_ADDRESS; | ||
| 1044 | ICMPBUF->options[1] = 1; /* Options length, 1 = 8 bytes. */ | ||
| 1045 | memcpy(&(ICMPBUF->options[2]), &uip_ethaddr, sizeof(uip_ethaddr)); | ||
| 1046 | ICMPBUF->icmpchksum = 0; | ||
| 1047 | ICMPBUF->icmpchksum = ~uip_icmp6chksum(); | ||
| 1048 | |||
| 1049 | goto send; | ||
| 1050 | |||
| 1051 | } | ||
| 1052 | goto drop; | ||
| 1053 | } else if(ICMPBUF->type == ICMP6_ECHO) { | ||
| 1054 | /* ICMP echo (i.e., ping) processing. This is simple, we only | ||
| 1055 | change the ICMP type from ECHO to ECHO_REPLY and update the | ||
| 1056 | ICMP checksum before we return the packet. */ | ||
| 1057 | |||
| 1058 | ICMPBUF->type = ICMP6_ECHO_REPLY; | ||
| 1059 | |||
| 1060 | uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr); | ||
| 1061 | uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr); | ||
| 1062 | ICMPBUF->icmpchksum = 0; | ||
| 1063 | ICMPBUF->icmpchksum = ~uip_icmp6chksum(); | ||
| 1064 | |||
| 1065 | UIP_STAT(++uip_stat.icmp.sent); | ||
| 1066 | goto send; | ||
| 1067 | } else { | ||
| 1068 | DEBUG_PRINTF("Unknown icmp6 message type %d\n", ICMPBUF->type); | ||
| 1069 | UIP_STAT(++uip_stat.icmp.drop); | ||
| 1070 | UIP_STAT(++uip_stat.icmp.typeerr); | ||
| 1071 | UIP_LOG("icmp: unknown ICMP message."); | ||
| 1072 | goto drop; | ||
| 1073 | } | ||
| 1074 | |||
| 1075 | /* End of IPv6 ICMP processing. */ | ||
| 1076 | |||
| 1077 | #endif /* !UIP_CONF_IPV6 */ | ||
| 1078 | |||
| 1079 | #if UIP_UDP | ||
| 1080 | /* UDP input processing. */ | ||
| 1081 | udp_input: | ||
| 1082 | /* UDP processing is really just a hack. We don't do anything to the | ||
| 1083 | UDP/IP headers, but let the UDP application do all the hard | ||
| 1084 | work. If the application sets uip_slen, it has a packet to | ||
| 1085 | send. */ | ||
| 1086 | #if UIP_UDP_CHECKSUMS | ||
| 1087 | uip_len = uip_len - UIP_IPUDPH_LEN; | ||
| 1088 | uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN]; | ||
| 1089 | if(UDPBUF->udpchksum != 0 && uip_udpchksum() != 0xffff) { | ||
| 1090 | UIP_STAT(++uip_stat.udp.drop); | ||
| 1091 | UIP_STAT(++uip_stat.udp.chkerr); | ||
| 1092 | UIP_LOG("udp: bad checksum."); | ||
| 1093 | goto drop; | ||
| 1094 | } | ||
| 1095 | #else /* UIP_UDP_CHECKSUMS */ | ||
| 1096 | uip_len = uip_len - UIP_IPUDPH_LEN; | ||
| 1097 | #endif /* UIP_UDP_CHECKSUMS */ | ||
| 1098 | |||
| 1099 | /* Demultiplex this UDP packet between the UDP "connections". */ | ||
| 1100 | for(uip_udp_conn = &uip_udp_conns[0]; | ||
| 1101 | uip_udp_conn < &uip_udp_conns[UIP_UDP_CONNS]; | ||
| 1102 | ++uip_udp_conn) { | ||
| 1103 | /* If the local UDP port is non-zero, the connection is considered | ||
| 1104 | to be used. If so, the local port number is checked against the | ||
| 1105 | destination port number in the received packet. If the two port | ||
| 1106 | numbers match, the remote port number is checked if the | ||
| 1107 | connection is bound to a remote port. Finally, if the | ||
| 1108 | connection is bound to a remote IP address, the source IP | ||
| 1109 | address of the packet is checked. */ | ||
| 1110 | if(uip_udp_conn->lport != 0 && | ||
| 1111 | UDPBUF->destport == uip_udp_conn->lport && | ||
| 1112 | (uip_udp_conn->rport == 0 || | ||
| 1113 | UDPBUF->srcport == uip_udp_conn->rport) && | ||
| 1114 | (uip_ipaddr_cmp(&uip_udp_conn->ripaddr, &uip_all_zeroes_addr) || | ||
| 1115 | uip_ipaddr_cmp(&uip_udp_conn->ripaddr, &uip_broadcast_addr) || | ||
| 1116 | uip_ipaddr_cmp(&BUF->srcipaddr, &uip_udp_conn->ripaddr))) { | ||
| 1117 | goto udp_found; | ||
| 1118 | } | ||
| 1119 | } | ||
| 1120 | UIP_LOG("udp: no matching connection found"); | ||
| 1121 | #if UIP_CONF_ICMP_DEST_UNREACH && !UIP_CONF_IPV6 | ||
| 1122 | /* Copy fields from packet header into payload of this ICMP packet. */ | ||
| 1123 | memcpy(&(ICMPBUF->payload[0]), ICMPBUF, UIP_IPH_LEN + 8); | ||
| 1124 | |||
| 1125 | /* Set the ICMP type and code. */ | ||
| 1126 | ICMPBUF->type = ICMP_DEST_UNREACHABLE; | ||
| 1127 | ICMPBUF->icode = ICMP_PORT_UNREACHABLE; | ||
| 1128 | |||
| 1129 | /* Calculate the ICMP checksum. */ | ||
| 1130 | ICMPBUF->icmpchksum = 0; | ||
| 1131 | ICMPBUF->icmpchksum = ~uip_chksum((u16_t *)&(ICMPBUF->type), 36); | ||
| 1132 | |||
| 1133 | /* Set the IP destination address to be the source address of the | ||
| 1134 | original packet. */ | ||
| 1135 | uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr); | ||
| 1136 | |||
| 1137 | /* Set our IP address as the source address. */ | ||
| 1138 | uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr); | ||
| 1139 | |||
| 1140 | /* The size of the ICMP destination unreachable packet is 36 + the | ||
| 1141 | size of the IP header (20) = 56. */ | ||
| 1142 | uip_len = 36 + UIP_IPH_LEN; | ||
| 1143 | ICMPBUF->len[0] = 0; | ||
| 1144 | ICMPBUF->len[1] = (u8_t)uip_len; | ||
| 1145 | ICMPBUF->ttl = UIP_TTL; | ||
| 1146 | ICMPBUF->proto = UIP_PROTO_ICMP; | ||
| 1147 | |||
| 1148 | goto ip_send_nolen; | ||
| 1149 | #else /* UIP_CONF_ICMP_DEST_UNREACH */ | ||
| 1150 | goto drop; | ||
| 1151 | #endif /* UIP_CONF_ICMP_DEST_UNREACH */ | ||
| 1152 | |||
| 1153 | udp_found: | ||
| 1154 | uip_conn = NULL; | ||
| 1155 | uip_flags = UIP_NEWDATA; | ||
| 1156 | uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN]; | ||
| 1157 | uip_slen = 0; | ||
| 1158 | UIP_UDP_APPCALL(); | ||
| 1159 | |||
| 1160 | udp_send: | ||
| 1161 | if(uip_slen == 0) { | ||
| 1162 | goto drop; | ||
| 1163 | } | ||
| 1164 | uip_len = uip_slen + UIP_IPUDPH_LEN; | ||
| 1165 | |||
| 1166 | #if UIP_CONF_IPV6 | ||
| 1167 | /* For IPv6, the IP length field does not include the IPv6 IP header | ||
| 1168 | length. */ | ||
| 1169 | BUF->len[0] = ((uip_len - UIP_IPH_LEN) >> 8); | ||
| 1170 | BUF->len[1] = ((uip_len - UIP_IPH_LEN) & 0xff); | ||
| 1171 | #else /* UIP_CONF_IPV6 */ | ||
| 1172 | BUF->len[0] = (uip_len >> 8); | ||
| 1173 | BUF->len[1] = (uip_len & 0xff); | ||
| 1174 | #endif /* UIP_CONF_IPV6 */ | ||
| 1175 | |||
| 1176 | BUF->ttl = uip_udp_conn->ttl; | ||
| 1177 | BUF->proto = UIP_PROTO_UDP; | ||
| 1178 | |||
| 1179 | UDPBUF->udplen = HTONS(uip_slen + UIP_UDPH_LEN); | ||
| 1180 | UDPBUF->udpchksum = 0; | ||
| 1181 | |||
| 1182 | BUF->srcport = uip_udp_conn->lport; | ||
| 1183 | BUF->destport = uip_udp_conn->rport; | ||
| 1184 | |||
| 1185 | uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr); | ||
| 1186 | uip_ipaddr_copy(&BUF->destipaddr, &uip_udp_conn->ripaddr); | ||
| 1187 | |||
| 1188 | uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPTCPH_LEN]; | ||
| 1189 | |||
| 1190 | #if UIP_UDP_CHECKSUMS | ||
| 1191 | /* Calculate UDP checksum. */ | ||
| 1192 | UDPBUF->udpchksum = ~(uip_udpchksum()); | ||
| 1193 | if(UDPBUF->udpchksum == 0) { | ||
| 1194 | UDPBUF->udpchksum = 0xffff; | ||
| 1195 | } | ||
| 1196 | #endif /* UIP_UDP_CHECKSUMS */ | ||
| 1197 | |||
| 1198 | goto ip_send_nolen; | ||
| 1199 | #endif /* UIP_UDP */ | ||
| 1200 | |||
| 1201 | /* TCP input processing. */ | ||
| 1202 | tcp_input: | ||
| 1203 | UIP_STAT(++uip_stat.tcp.recv); | ||
| 1204 | |||
| 1205 | /* Start of TCP input header processing code. */ | ||
| 1206 | |||
| 1207 | if(uip_tcpchksum() != 0xffff) { /* Compute and check the TCP | ||
| 1208 | checksum. */ | ||
| 1209 | UIP_STAT(++uip_stat.tcp.drop); | ||
| 1210 | UIP_STAT(++uip_stat.tcp.chkerr); | ||
| 1211 | UIP_LOG("tcp: bad checksum."); | ||
| 1212 | goto drop; | ||
| 1213 | } | ||
| 1214 | |||
| 1215 | /* Demultiplex this segment. */ | ||
| 1216 | /* First check any active connections. */ | ||
| 1217 | for(uip_connr = &uip_conns[0]; uip_connr <= &uip_conns[UIP_CONNS - 1]; | ||
| 1218 | ++uip_connr) { | ||
| 1219 | if(uip_connr->tcpstateflags != UIP_CLOSED && | ||
| 1220 | BUF->destport == uip_connr->lport && | ||
| 1221 | BUF->srcport == uip_connr->rport && | ||
| 1222 | uip_ipaddr_cmp(&BUF->srcipaddr, &uip_connr->ripaddr)) { | ||
| 1223 | goto found; | ||
| 1224 | } | ||
| 1225 | } | ||
| 1226 | |||
| 1227 | /* If we didn't find and active connection that expected the packet, | ||
| 1228 | either this packet is an old duplicate, or this is a SYN packet | ||
| 1229 | destined for a connection in LISTEN. If the SYN flag isn't set, | ||
| 1230 | it is an old packet and we send a RST. */ | ||
| 1231 | if((BUF->flags & TCP_CTL) != TCP_SYN) { | ||
| 1232 | goto reset; | ||
| 1233 | } | ||
| 1234 | |||
| 1235 | tmp16 = BUF->destport; | ||
| 1236 | /* Next, check listening connections. */ | ||
| 1237 | for(c = 0; c < UIP_LISTENPORTS; ++c) { | ||
| 1238 | if(tmp16 == uip_listenports[c]) { | ||
| 1239 | goto found_listen; | ||
| 1240 | } | ||
| 1241 | } | ||
| 1242 | |||
| 1243 | /* No matching connection found, so we send a RST packet. */ | ||
| 1244 | UIP_STAT(++uip_stat.tcp.synrst); | ||
| 1245 | |||
| 1246 | reset: | ||
| 1247 | /* We do not send resets in response to resets. */ | ||
| 1248 | if(BUF->flags & TCP_RST) { | ||
| 1249 | goto drop; | ||
| 1250 | } | ||
| 1251 | |||
| 1252 | UIP_STAT(++uip_stat.tcp.rst); | ||
| 1253 | |||
| 1254 | BUF->flags = TCP_RST | TCP_ACK; | ||
| 1255 | uip_len = UIP_IPTCPH_LEN; | ||
| 1256 | BUF->tcpoffset = 5 << 4; | ||
| 1257 | |||
| 1258 | /* Flip the seqno and ackno fields in the TCP header. */ | ||
| 1259 | c = BUF->seqno[3]; | ||
| 1260 | BUF->seqno[3] = BUF->ackno[3]; | ||
| 1261 | BUF->ackno[3] = c; | ||
| 1262 | |||
| 1263 | c = BUF->seqno[2]; | ||
| 1264 | BUF->seqno[2] = BUF->ackno[2]; | ||
| 1265 | BUF->ackno[2] = c; | ||
| 1266 | |||
| 1267 | c = BUF->seqno[1]; | ||
| 1268 | BUF->seqno[1] = BUF->ackno[1]; | ||
| 1269 | BUF->ackno[1] = c; | ||
| 1270 | |||
| 1271 | c = BUF->seqno[0]; | ||
| 1272 | BUF->seqno[0] = BUF->ackno[0]; | ||
| 1273 | BUF->ackno[0] = c; | ||
| 1274 | |||
| 1275 | /* We also have to increase the sequence number we are | ||
| 1276 | acknowledging. If the least significant byte overflowed, we need | ||
| 1277 | to propagate the carry to the other bytes as well. */ | ||
| 1278 | if(++BUF->ackno[3] == 0) { | ||
| 1279 | if(++BUF->ackno[2] == 0) { | ||
| 1280 | if(++BUF->ackno[1] == 0) { | ||
| 1281 | ++BUF->ackno[0]; | ||
| 1282 | } | ||
| 1283 | } | ||
| 1284 | } | ||
| 1285 | |||
| 1286 | /* Swap port numbers. */ | ||
| 1287 | tmp16 = BUF->srcport; | ||
| 1288 | BUF->srcport = BUF->destport; | ||
| 1289 | BUF->destport = tmp16; | ||
| 1290 | |||
| 1291 | /* Swap IP addresses. */ | ||
| 1292 | uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr); | ||
| 1293 | uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr); | ||
| 1294 | |||
| 1295 | /* And send out the RST packet! */ | ||
| 1296 | goto tcp_send_noconn; | ||
| 1297 | |||
| 1298 | /* This label will be jumped to if we matched the incoming packet | ||
| 1299 | with a connection in LISTEN. In that case, we should create a new | ||
| 1300 | connection and send a SYNACK in return. */ | ||
| 1301 | found_listen: | ||
| 1302 | /* First we check if there are any connections available. Unused | ||
| 1303 | connections are kept in the same table as used connections, but | ||
| 1304 | unused ones have the tcpstate set to CLOSED. Also, connections in | ||
| 1305 | TIME_WAIT are kept track of and we'll use the oldest one if no | ||
| 1306 | CLOSED connections are found. Thanks to Eddie C. Dost for a very | ||
| 1307 | nice algorithm for the TIME_WAIT search. */ | ||
| 1308 | uip_connr = 0; | ||
| 1309 | for(c = 0; c < UIP_CONNS; ++c) { | ||
| 1310 | if(uip_conns[c].tcpstateflags == UIP_CLOSED) { | ||
| 1311 | uip_connr = &uip_conns[c]; | ||
| 1312 | break; | ||
| 1313 | } | ||
| 1314 | if(uip_conns[c].tcpstateflags == UIP_TIME_WAIT) { | ||
| 1315 | if(uip_connr == 0 || | ||
| 1316 | uip_conns[c].timer > uip_connr->timer) { | ||
| 1317 | uip_connr = &uip_conns[c]; | ||
| 1318 | } | ||
| 1319 | } | ||
| 1320 | } | ||
| 1321 | |||
| 1322 | if(uip_connr == 0) { | ||
| 1323 | /* All connections are used already, we drop packet and hope that | ||
| 1324 | the remote end will retransmit the packet at a time when we | ||
| 1325 | have more spare connections. */ | ||
| 1326 | UIP_STAT(++uip_stat.tcp.syndrop); | ||
| 1327 | UIP_LOG("tcp: found no unused connections."); | ||
| 1328 | goto drop; | ||
| 1329 | } | ||
| 1330 | uip_conn = uip_connr; | ||
| 1331 | |||
| 1332 | /* Fill in the necessary fields for the new connection. */ | ||
| 1333 | uip_connr->rto = uip_connr->timer = UIP_RTO; | ||
| 1334 | uip_connr->sa = 0; | ||
| 1335 | uip_connr->sv = 4; | ||
| 1336 | uip_connr->nrtx = 0; | ||
| 1337 | uip_connr->lport = BUF->destport; | ||
| 1338 | uip_connr->rport = BUF->srcport; | ||
| 1339 | uip_ipaddr_copy(&uip_connr->ripaddr, &BUF->srcipaddr); | ||
| 1340 | uip_connr->tcpstateflags = UIP_SYN_RCVD; | ||
| 1341 | |||
| 1342 | uip_connr->snd_nxt[0] = iss[0]; | ||
| 1343 | uip_connr->snd_nxt[1] = iss[1]; | ||
| 1344 | uip_connr->snd_nxt[2] = iss[2]; | ||
| 1345 | uip_connr->snd_nxt[3] = iss[3]; | ||
| 1346 | uip_connr->len = 1; | ||
| 1347 | |||
| 1348 | /* rcv_nxt should be the seqno from the incoming packet + 1. */ | ||
| 1349 | uip_connr->rcv_nxt[3] = BUF->seqno[3]; | ||
| 1350 | uip_connr->rcv_nxt[2] = BUF->seqno[2]; | ||
| 1351 | uip_connr->rcv_nxt[1] = BUF->seqno[1]; | ||
| 1352 | uip_connr->rcv_nxt[0] = BUF->seqno[0]; | ||
| 1353 | uip_add_rcv_nxt(1); | ||
| 1354 | |||
| 1355 | /* Parse the TCP MSS option, if present. */ | ||
| 1356 | if((BUF->tcpoffset & 0xf0) > 0x50) { | ||
| 1357 | for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) { | ||
| 1358 | opt = uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + c]; | ||
| 1359 | if(opt == TCP_OPT_END) { | ||
| 1360 | /* End of options. */ | ||
| 1361 | break; | ||
| 1362 | } else if(opt == TCP_OPT_NOOP) { | ||
| 1363 | ++c; | ||
| 1364 | /* NOP option. */ | ||
| 1365 | } else if(opt == TCP_OPT_MSS && | ||
| 1366 | uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN) { | ||
| 1367 | /* An MSS option with the right option length. */ | ||
| 1368 | tmp16 = ((u16_t)uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8) | | ||
| 1369 | (u16_t)uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + 3 + c]; | ||
| 1370 | uip_connr->initialmss = uip_connr->mss = | ||
| 1371 | tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16; | ||
| 1372 | |||
| 1373 | /* And we are done processing options. */ | ||
| 1374 | break; | ||
| 1375 | } else { | ||
| 1376 | /* All other options have a length field, so that we easily | ||
| 1377 | can skip past them. */ | ||
| 1378 | if(uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0) { | ||
| 1379 | /* If the length field is zero, the options are malformed | ||
| 1380 | and we don't process them further. */ | ||
| 1381 | break; | ||
| 1382 | } | ||
| 1383 | c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c]; | ||
| 1384 | } | ||
| 1385 | } | ||
| 1386 | } | ||
| 1387 | |||
| 1388 | /* Our response will be a SYNACK. */ | ||
| 1389 | #if UIP_ACTIVE_OPEN | ||
| 1390 | tcp_send_synack: | ||
| 1391 | BUF->flags = TCP_ACK; | ||
| 1392 | |||
| 1393 | tcp_send_syn: | ||
| 1394 | BUF->flags |= TCP_SYN; | ||
| 1395 | #else /* UIP_ACTIVE_OPEN */ | ||
| 1396 | tcp_send_synack: | ||
| 1397 | BUF->flags = TCP_SYN | TCP_ACK; | ||
| 1398 | #endif /* UIP_ACTIVE_OPEN */ | ||
| 1399 | |||
| 1400 | /* We send out the TCP Maximum Segment Size option with our | ||
| 1401 | SYNACK. */ | ||
| 1402 | BUF->optdata[0] = TCP_OPT_MSS; | ||
| 1403 | BUF->optdata[1] = TCP_OPT_MSS_LEN; | ||
| 1404 | BUF->optdata[2] = (UIP_TCP_MSS) / 256; | ||
| 1405 | BUF->optdata[3] = (UIP_TCP_MSS) & 255; | ||
| 1406 | uip_len = UIP_IPTCPH_LEN + TCP_OPT_MSS_LEN; | ||
| 1407 | BUF->tcpoffset = ((UIP_TCPH_LEN + TCP_OPT_MSS_LEN) / 4) << 4; | ||
| 1408 | goto tcp_send; | ||
| 1409 | |||
| 1410 | /* This label will be jumped to if we found an active connection. */ | ||
| 1411 | found: | ||
| 1412 | uip_conn = uip_connr; | ||
| 1413 | uip_flags = 0; | ||
| 1414 | /* We do a very naive form of TCP reset processing; we just accept | ||
| 1415 | any RST and kill our connection. We should in fact check if the | ||
| 1416 | sequence number of this reset is within our advertised window | ||
| 1417 | before we accept the reset. */ | ||
| 1418 | if(BUF->flags & TCP_RST) { | ||
| 1419 | uip_connr->tcpstateflags = UIP_CLOSED; | ||
| 1420 | UIP_LOG("tcp: got reset, aborting connection."); | ||
| 1421 | uip_flags = UIP_ABORT; | ||
| 1422 | UIP_APPCALL(); | ||
| 1423 | goto drop; | ||
| 1424 | } | ||
| 1425 | /* Calculate the length of the data, if the application has sent | ||
| 1426 | any data to us. */ | ||
| 1427 | c = (BUF->tcpoffset >> 4) << 2; | ||
| 1428 | /* uip_len will contain the length of the actual TCP data. This is | ||
| 1429 | calculated by subtracing the length of the TCP header (in | ||
| 1430 | c) and the length of the IP header (20 bytes). */ | ||
| 1431 | uip_len = uip_len - c - UIP_IPH_LEN; | ||
| 1432 | |||
| 1433 | /* First, check if the sequence number of the incoming packet is | ||
| 1434 | what we're expecting next. If not, we send out an ACK with the | ||
| 1435 | correct numbers in. */ | ||
| 1436 | if(!(((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_SYN_SENT) && | ||
| 1437 | ((BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK)))) { | ||
| 1438 | if((uip_len > 0 || ((BUF->flags & (TCP_SYN | TCP_FIN)) != 0)) && | ||
| 1439 | (BUF->seqno[0] != uip_connr->rcv_nxt[0] || | ||
| 1440 | BUF->seqno[1] != uip_connr->rcv_nxt[1] || | ||
| 1441 | BUF->seqno[2] != uip_connr->rcv_nxt[2] || | ||
| 1442 | BUF->seqno[3] != uip_connr->rcv_nxt[3])) { | ||
| 1443 | goto tcp_send_ack; | ||
| 1444 | } | ||
| 1445 | } | ||
| 1446 | |||
| 1447 | /* Next, check if the incoming segment acknowledges any outstanding | ||
| 1448 | data. If so, we update the sequence number, reset the length of | ||
| 1449 | the outstanding data, calculate RTT estimations, and reset the | ||
| 1450 | retransmission timer. */ | ||
| 1451 | if((BUF->flags & TCP_ACK) && uip_outstanding(uip_connr)) { | ||
| 1452 | uip_add32(uip_connr->snd_nxt, uip_connr->len); | ||
| 1453 | |||
| 1454 | if(BUF->ackno[0] == uip_acc32[0] && | ||
| 1455 | BUF->ackno[1] == uip_acc32[1] && | ||
| 1456 | BUF->ackno[2] == uip_acc32[2] && | ||
| 1457 | BUF->ackno[3] == uip_acc32[3]) { | ||
| 1458 | /* Update sequence number. */ | ||
| 1459 | uip_connr->snd_nxt[0] = uip_acc32[0]; | ||
| 1460 | uip_connr->snd_nxt[1] = uip_acc32[1]; | ||
| 1461 | uip_connr->snd_nxt[2] = uip_acc32[2]; | ||
| 1462 | uip_connr->snd_nxt[3] = uip_acc32[3]; | ||
| 1463 | |||
| 1464 | /* Do RTT estimation, unless we have done retransmissions. */ | ||
| 1465 | if(uip_connr->nrtx == 0) { | ||
| 1466 | signed char m; | ||
| 1467 | m = uip_connr->rto - uip_connr->timer; | ||
| 1468 | /* This is taken directly from VJs original code in his paper */ | ||
| 1469 | m = m - (uip_connr->sa >> 3); | ||
| 1470 | uip_connr->sa += m; | ||
| 1471 | if(m < 0) { | ||
| 1472 | m = -m; | ||
| 1473 | } | ||
| 1474 | m = m - (uip_connr->sv >> 2); | ||
| 1475 | uip_connr->sv += m; | ||
| 1476 | uip_connr->rto = (uip_connr->sa >> 3) + uip_connr->sv; | ||
| 1477 | |||
| 1478 | } | ||
| 1479 | /* Set the acknowledged flag. */ | ||
| 1480 | uip_flags = UIP_ACKDATA; | ||
| 1481 | /* Reset the retransmission timer. */ | ||
| 1482 | uip_connr->timer = uip_connr->rto; | ||
| 1483 | |||
| 1484 | /* Reset length of outstanding data. */ | ||
| 1485 | uip_connr->len = 0; | ||
| 1486 | } | ||
| 1487 | |||
| 1488 | } | ||
| 1489 | |||
| 1490 | /* Do different things depending on in what state the connection is. */ | ||
| 1491 | switch(uip_connr->tcpstateflags & UIP_TS_MASK) { | ||
| 1492 | /* CLOSED and LISTEN are not handled here. CLOSE_WAIT is not | ||
| 1493 | implemented, since we force the application to close when the | ||
| 1494 | peer sends a FIN (hence the application goes directly from | ||
| 1495 | ESTABLISHED to LAST_ACK). */ | ||
| 1496 | case UIP_SYN_RCVD: | ||
| 1497 | /* In SYN_RCVD we have sent out a SYNACK in response to a SYN, and | ||
| 1498 | we are waiting for an ACK that acknowledges the data we sent | ||
| 1499 | out the last time. Therefore, we want to have the UIP_ACKDATA | ||
| 1500 | flag set. If so, we enter the ESTABLISHED state. */ | ||
| 1501 | if(uip_flags & UIP_ACKDATA) { | ||
| 1502 | uip_connr->tcpstateflags = UIP_ESTABLISHED; | ||
| 1503 | uip_flags = UIP_CONNECTED; | ||
| 1504 | uip_connr->len = 0; | ||
| 1505 | if(uip_len > 0) { | ||
| 1506 | uip_flags |= UIP_NEWDATA; | ||
| 1507 | uip_add_rcv_nxt(uip_len); | ||
| 1508 | } | ||
| 1509 | uip_slen = 0; | ||
| 1510 | UIP_APPCALL(); | ||
| 1511 | goto appsend; | ||
| 1512 | } | ||
| 1513 | goto drop; | ||
| 1514 | #if UIP_ACTIVE_OPEN | ||
| 1515 | case UIP_SYN_SENT: | ||
| 1516 | /* In SYN_SENT, we wait for a SYNACK that is sent in response to | ||
| 1517 | our SYN. The rcv_nxt is set to sequence number in the SYNACK | ||
| 1518 | plus one, and we send an ACK. We move into the ESTABLISHED | ||
| 1519 | state. */ | ||
| 1520 | if((uip_flags & UIP_ACKDATA) && | ||
| 1521 | (BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK)) { | ||
| 1522 | |||
| 1523 | /* Parse the TCP MSS option, if present. */ | ||
| 1524 | if((BUF->tcpoffset & 0xf0) > 0x50) { | ||
| 1525 | for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) { | ||
| 1526 | opt = uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + c]; | ||
| 1527 | if(opt == TCP_OPT_END) { | ||
| 1528 | /* End of options. */ | ||
| 1529 | break; | ||
| 1530 | } else if(opt == TCP_OPT_NOOP) { | ||
| 1531 | ++c; | ||
| 1532 | /* NOP option. */ | ||
| 1533 | } else if(opt == TCP_OPT_MSS && | ||
| 1534 | uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN) { | ||
| 1535 | /* An MSS option with the right option length. */ | ||
| 1536 | tmp16 = (uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8) | | ||
| 1537 | uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 3 + c]; | ||
| 1538 | uip_connr->initialmss = | ||
| 1539 | uip_connr->mss = tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16; | ||
| 1540 | |||
| 1541 | /* And we are done processing options. */ | ||
| 1542 | break; | ||
| 1543 | } else { | ||
| 1544 | /* All other options have a length field, so that we easily | ||
| 1545 | can skip past them. */ | ||
| 1546 | if(uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0) { | ||
| 1547 | /* If the length field is zero, the options are malformed | ||
| 1548 | and we don't process them further. */ | ||
| 1549 | break; | ||
| 1550 | } | ||
| 1551 | c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c]; | ||
| 1552 | } | ||
| 1553 | } | ||
| 1554 | } | ||
| 1555 | uip_connr->tcpstateflags = UIP_ESTABLISHED; | ||
| 1556 | uip_connr->rcv_nxt[0] = BUF->seqno[0]; | ||
| 1557 | uip_connr->rcv_nxt[1] = BUF->seqno[1]; | ||
| 1558 | uip_connr->rcv_nxt[2] = BUF->seqno[2]; | ||
| 1559 | uip_connr->rcv_nxt[3] = BUF->seqno[3]; | ||
| 1560 | uip_add_rcv_nxt(1); | ||
| 1561 | uip_flags = UIP_CONNECTED | UIP_NEWDATA; | ||
| 1562 | uip_connr->len = 0; | ||
| 1563 | uip_len = 0; | ||
| 1564 | uip_slen = 0; | ||
| 1565 | UIP_APPCALL(); | ||
| 1566 | goto appsend; | ||
| 1567 | } | ||
| 1568 | /* Inform the application that the connection failed */ | ||
| 1569 | uip_flags = UIP_ABORT; | ||
| 1570 | UIP_APPCALL(); | ||
| 1571 | /* The connection is closed after we send the RST */ | ||
| 1572 | uip_conn->tcpstateflags = UIP_CLOSED; | ||
| 1573 | goto reset; | ||
| 1574 | #endif /* UIP_ACTIVE_OPEN */ | ||
| 1575 | |||
| 1576 | case UIP_ESTABLISHED: | ||
| 1577 | /* In the ESTABLISHED state, we call upon the application to feed | ||
| 1578 | data into the uip_buf. If the UIP_ACKDATA flag is set, the | ||
| 1579 | application should put new data into the buffer, otherwise we are | ||
| 1580 | retransmitting an old segment, and the application should put that | ||
| 1581 | data into the buffer. | ||
| 1582 | |||
| 1583 | If the incoming packet is a FIN, we should close the connection on | ||
| 1584 | this side as well, and we send out a FIN and enter the LAST_ACK | ||
| 1585 | state. We require that there is no outstanding data; otherwise the | ||
| 1586 | sequence numbers will be screwed up. */ | ||
| 1587 | |||
| 1588 | if(BUF->flags & TCP_FIN && !(uip_connr->tcpstateflags & UIP_STOPPED)) { | ||
| 1589 | if(uip_outstanding(uip_connr)) { | ||
| 1590 | goto drop; | ||
| 1591 | } | ||
| 1592 | uip_add_rcv_nxt(1 + uip_len); | ||
| 1593 | uip_flags |= UIP_CLOSE; | ||
| 1594 | if(uip_len > 0) { | ||
| 1595 | uip_flags |= UIP_NEWDATA; | ||
| 1596 | } | ||
| 1597 | UIP_APPCALL(); | ||
| 1598 | uip_connr->len = 1; | ||
| 1599 | uip_connr->tcpstateflags = UIP_LAST_ACK; | ||
| 1600 | uip_connr->nrtx = 0; | ||
| 1601 | tcp_send_finack: | ||
| 1602 | BUF->flags = TCP_FIN | TCP_ACK; | ||
| 1603 | goto tcp_send_nodata; | ||
| 1604 | } | ||
| 1605 | |||
| 1606 | /* Check the URG flag. If this is set, the segment carries urgent | ||
| 1607 | data that we must pass to the application. */ | ||
| 1608 | if((BUF->flags & TCP_URG) != 0) { | ||
| 1609 | #if UIP_URGDATA > 0 | ||
| 1610 | uip_urglen = (BUF->urgp[0] << 8) | BUF->urgp[1]; | ||
| 1611 | if(uip_urglen > uip_len) { | ||
| 1612 | /* There is more urgent data in the next segment to come. */ | ||
| 1613 | uip_urglen = uip_len; | ||
| 1614 | } | ||
| 1615 | uip_add_rcv_nxt(uip_urglen); | ||
| 1616 | uip_len -= uip_urglen; | ||
| 1617 | uip_urgdata = uip_appdata; | ||
| 1618 | uip_appdata += uip_urglen; | ||
| 1619 | } else { | ||
| 1620 | uip_urglen = 0; | ||
| 1621 | #else /* UIP_URGDATA > 0 */ | ||
| 1622 | uip_appdata = ((char *)uip_appdata) + ((BUF->urgp[0] << 8) | BUF->urgp[1]); | ||
| 1623 | uip_len -= (BUF->urgp[0] << 8) | BUF->urgp[1]; | ||
| 1624 | #endif /* UIP_URGDATA > 0 */ | ||
| 1625 | } | ||
| 1626 | |||
| 1627 | /* If uip_len > 0 we have TCP data in the packet, and we flag this | ||
| 1628 | by setting the UIP_NEWDATA flag and update the sequence number | ||
| 1629 | we acknowledge. If the application has stopped the dataflow | ||
| 1630 | using uip_stop(), we must not accept any data packets from the | ||
| 1631 | remote host. */ | ||
| 1632 | if(uip_len > 0 && !(uip_connr->tcpstateflags & UIP_STOPPED)) { | ||
| 1633 | uip_flags |= UIP_NEWDATA; | ||
| 1634 | uip_add_rcv_nxt(uip_len); | ||
| 1635 | } | ||
| 1636 | |||
| 1637 | /* Check if the available buffer space advertised by the other end | ||
| 1638 | is smaller than the initial MSS for this connection. If so, we | ||
| 1639 | set the current MSS to the window size to ensure that the | ||
| 1640 | application does not send more data than the other end can | ||
| 1641 | handle. | ||
| 1642 | |||
| 1643 | If the remote host advertises a zero window, we set the MSS to | ||
| 1644 | the initial MSS so that the application will send an entire MSS | ||
| 1645 | of data. This data will not be acknowledged by the receiver, | ||
| 1646 | and the application will retransmit it. This is called the | ||
| 1647 | "persistent timer" and uses the retransmission mechanism. | ||
| 1648 | */ | ||
| 1649 | tmp16 = ((u16_t)BUF->wnd[0] << 8) + (u16_t)BUF->wnd[1]; | ||
| 1650 | if(tmp16 > uip_connr->initialmss || | ||
| 1651 | tmp16 == 0) { | ||
| 1652 | tmp16 = uip_connr->initialmss; | ||
| 1653 | } | ||
| 1654 | uip_connr->mss = tmp16; | ||
| 1655 | |||
| 1656 | /* If this packet constitutes an ACK for outstanding data (flagged | ||
| 1657 | by the UIP_ACKDATA flag, we should call the application since it | ||
| 1658 | might want to send more data. If the incoming packet had data | ||
| 1659 | from the peer (as flagged by the UIP_NEWDATA flag), the | ||
| 1660 | application must also be notified. | ||
| 1661 | |||
| 1662 | When the application is called, the global variable uip_len | ||
| 1663 | contains the length of the incoming data. The application can | ||
| 1664 | access the incoming data through the global pointer | ||
| 1665 | uip_appdata, which usually points UIP_IPTCPH_LEN + UIP_LLH_LEN | ||
| 1666 | bytes into the uip_buf array. | ||
| 1667 | |||
| 1668 | If the application wishes to send any data, this data should be | ||
| 1669 | put into the uip_appdata and the length of the data should be | ||
| 1670 | put into uip_len. If the application don't have any data to | ||
| 1671 | send, uip_len must be set to 0. */ | ||
| 1672 | if(uip_flags & (UIP_NEWDATA | UIP_ACKDATA)) { | ||
| 1673 | uip_slen = 0; | ||
| 1674 | UIP_APPCALL(); | ||
| 1675 | |||
| 1676 | appsend: | ||
| 1677 | |||
| 1678 | if(uip_flags & UIP_ABORT) { | ||
| 1679 | uip_slen = 0; | ||
| 1680 | uip_connr->tcpstateflags = UIP_CLOSED; | ||
| 1681 | BUF->flags = TCP_RST | TCP_ACK; | ||
| 1682 | goto tcp_send_nodata; | ||
| 1683 | } | ||
| 1684 | |||
| 1685 | if(uip_flags & UIP_CLOSE) { | ||
| 1686 | uip_slen = 0; | ||
| 1687 | uip_connr->len = 1; | ||
| 1688 | uip_connr->tcpstateflags = UIP_FIN_WAIT_1; | ||
| 1689 | uip_connr->nrtx = 0; | ||
| 1690 | BUF->flags = TCP_FIN | TCP_ACK; | ||
| 1691 | goto tcp_send_nodata; | ||
| 1692 | } | ||
| 1693 | |||
| 1694 | /* If uip_slen > 0, the application has data to be sent. */ | ||
| 1695 | if(uip_slen > 0) { | ||
| 1696 | |||
| 1697 | /* If the connection has acknowledged data, the contents of | ||
| 1698 | the ->len variable should be discarded. */ | ||
| 1699 | if((uip_flags & UIP_ACKDATA) != 0) { | ||
| 1700 | uip_connr->len = 0; | ||
| 1701 | } | ||
| 1702 | |||
| 1703 | /* If the ->len variable is non-zero the connection has | ||
| 1704 | already data in transit and cannot send anymore right | ||
| 1705 | now. */ | ||
| 1706 | if(uip_connr->len == 0) { | ||
| 1707 | |||
| 1708 | /* The application cannot send more than what is allowed by | ||
| 1709 | the mss (the minumum of the MSS and the available | ||
| 1710 | window). */ | ||
| 1711 | if(uip_slen > uip_connr->mss) { | ||
| 1712 | uip_slen = uip_connr->mss; | ||
| 1713 | } | ||
| 1714 | |||
| 1715 | /* Remember how much data we send out now so that we know | ||
| 1716 | when everything has been acknowledged. */ | ||
| 1717 | uip_connr->len = uip_slen; | ||
| 1718 | } else { | ||
| 1719 | |||
| 1720 | /* If the application already had unacknowledged data, we | ||
| 1721 | make sure that the application does not send (i.e., | ||
| 1722 | retransmit) out more than it previously sent out. */ | ||
| 1723 | uip_slen = uip_connr->len; | ||
| 1724 | } | ||
| 1725 | } | ||
| 1726 | uip_connr->nrtx = 0; | ||
| 1727 | apprexmit: | ||
| 1728 | uip_appdata = uip_sappdata; | ||
| 1729 | |||
| 1730 | /* If the application has data to be sent, or if the incoming | ||
| 1731 | packet had new data in it, we must send out a packet. */ | ||
| 1732 | if(uip_slen > 0 && uip_connr->len > 0) { | ||
| 1733 | /* Add the length of the IP and TCP headers. */ | ||
| 1734 | uip_len = uip_connr->len + UIP_TCPIP_HLEN; | ||
| 1735 | /* We always set the ACK flag in response packets. */ | ||
| 1736 | BUF->flags = TCP_ACK | TCP_PSH; | ||
| 1737 | /* Send the packet. */ | ||
| 1738 | goto tcp_send_noopts; | ||
| 1739 | } | ||
| 1740 | /* If there is no data to send, just send out a pure ACK if | ||
| 1741 | there is newdata. */ | ||
| 1742 | if(uip_flags & UIP_NEWDATA) { | ||
| 1743 | uip_len = UIP_TCPIP_HLEN; | ||
| 1744 | BUF->flags = TCP_ACK; | ||
| 1745 | goto tcp_send_noopts; | ||
| 1746 | } | ||
| 1747 | } | ||
| 1748 | goto drop; | ||
| 1749 | case UIP_LAST_ACK: | ||
| 1750 | /* We can close this connection if the peer has acknowledged our | ||
| 1751 | FIN. This is indicated by the UIP_ACKDATA flag. */ | ||
| 1752 | if(uip_flags & UIP_ACKDATA) { | ||
| 1753 | uip_connr->tcpstateflags = UIP_CLOSED; | ||
| 1754 | uip_flags = UIP_CLOSE; | ||
| 1755 | UIP_APPCALL(); | ||
| 1756 | } | ||
| 1757 | break; | ||
| 1758 | |||
| 1759 | case UIP_FIN_WAIT_1: | ||
| 1760 | /* The application has closed the connection, but the remote host | ||
| 1761 | hasn't closed its end yet. Thus we do nothing but wait for a | ||
| 1762 | FIN from the other side. */ | ||
| 1763 | if(uip_len > 0) { | ||
| 1764 | uip_add_rcv_nxt(uip_len); | ||
| 1765 | } | ||
| 1766 | if(BUF->flags & TCP_FIN) { | ||
| 1767 | if(uip_flags & UIP_ACKDATA) { | ||
| 1768 | uip_connr->tcpstateflags = UIP_TIME_WAIT; | ||
| 1769 | uip_connr->timer = 0; | ||
| 1770 | uip_connr->len = 0; | ||
| 1771 | } else { | ||
| 1772 | uip_connr->tcpstateflags = UIP_CLOSING; | ||
| 1773 | } | ||
| 1774 | uip_add_rcv_nxt(1); | ||
| 1775 | uip_flags = UIP_CLOSE; | ||
| 1776 | UIP_APPCALL(); | ||
| 1777 | goto tcp_send_ack; | ||
| 1778 | } else if(uip_flags & UIP_ACKDATA) { | ||
| 1779 | uip_connr->tcpstateflags = UIP_FIN_WAIT_2; | ||
| 1780 | uip_connr->len = 0; | ||
| 1781 | goto drop; | ||
| 1782 | } | ||
| 1783 | if(uip_len > 0) { | ||
| 1784 | goto tcp_send_ack; | ||
| 1785 | } | ||
| 1786 | goto drop; | ||
| 1787 | |||
| 1788 | case UIP_FIN_WAIT_2: | ||
| 1789 | if(uip_len > 0) { | ||
| 1790 | uip_add_rcv_nxt(uip_len); | ||
| 1791 | } | ||
| 1792 | if(BUF->flags & TCP_FIN) { | ||
| 1793 | uip_connr->tcpstateflags = UIP_TIME_WAIT; | ||
| 1794 | uip_connr->timer = 0; | ||
| 1795 | uip_add_rcv_nxt(1); | ||
| 1796 | uip_flags = UIP_CLOSE; | ||
| 1797 | UIP_APPCALL(); | ||
| 1798 | goto tcp_send_ack; | ||
| 1799 | } | ||
| 1800 | if(uip_len > 0) { | ||
| 1801 | goto tcp_send_ack; | ||
| 1802 | } | ||
| 1803 | goto drop; | ||
| 1804 | |||
| 1805 | case UIP_TIME_WAIT: | ||
| 1806 | goto tcp_send_ack; | ||
| 1807 | |||
| 1808 | case UIP_CLOSING: | ||
| 1809 | if(uip_flags & UIP_ACKDATA) { | ||
| 1810 | uip_connr->tcpstateflags = UIP_TIME_WAIT; | ||
| 1811 | uip_connr->timer = 0; | ||
| 1812 | } | ||
| 1813 | } | ||
| 1814 | goto drop; | ||
| 1815 | |||
| 1816 | /* We jump here when we are ready to send the packet, and just want | ||
| 1817 | to set the appropriate TCP sequence numbers in the TCP header. */ | ||
| 1818 | tcp_send_ack: | ||
| 1819 | BUF->flags = TCP_ACK; | ||
| 1820 | |||
| 1821 | tcp_send_nodata: | ||
| 1822 | uip_len = UIP_IPTCPH_LEN; | ||
| 1823 | |||
| 1824 | tcp_send_noopts: | ||
| 1825 | BUF->tcpoffset = (UIP_TCPH_LEN / 4) << 4; | ||
| 1826 | |||
| 1827 | /* We're done with the input processing. We are now ready to send a | ||
| 1828 | reply. Our job is to fill in all the fields of the TCP and IP | ||
| 1829 | headers before calculating the checksum and finally send the | ||
| 1830 | packet. */ | ||
| 1831 | tcp_send: | ||
| 1832 | BUF->ackno[0] = uip_connr->rcv_nxt[0]; | ||
| 1833 | BUF->ackno[1] = uip_connr->rcv_nxt[1]; | ||
| 1834 | BUF->ackno[2] = uip_connr->rcv_nxt[2]; | ||
| 1835 | BUF->ackno[3] = uip_connr->rcv_nxt[3]; | ||
| 1836 | |||
| 1837 | BUF->seqno[0] = uip_connr->snd_nxt[0]; | ||
| 1838 | BUF->seqno[1] = uip_connr->snd_nxt[1]; | ||
| 1839 | BUF->seqno[2] = uip_connr->snd_nxt[2]; | ||
| 1840 | BUF->seqno[3] = uip_connr->snd_nxt[3]; | ||
| 1841 | |||
| 1842 | BUF->proto = UIP_PROTO_TCP; | ||
| 1843 | |||
| 1844 | BUF->srcport = uip_connr->lport; | ||
| 1845 | BUF->destport = uip_connr->rport; | ||
| 1846 | |||
| 1847 | uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr); | ||
| 1848 | uip_ipaddr_copy(&BUF->destipaddr, &uip_connr->ripaddr); | ||
| 1849 | |||
| 1850 | if(uip_connr->tcpstateflags & UIP_STOPPED) { | ||
| 1851 | /* If the connection has issued uip_stop(), we advertise a zero | ||
| 1852 | window so that the remote host will stop sending data. */ | ||
| 1853 | BUF->wnd[0] = BUF->wnd[1] = 0; | ||
| 1854 | } else { | ||
| 1855 | BUF->wnd[0] = ((UIP_RECEIVE_WINDOW) >> 8); | ||
| 1856 | BUF->wnd[1] = ((UIP_RECEIVE_WINDOW) & 0xff); | ||
| 1857 | } | ||
| 1858 | |||
| 1859 | tcp_send_noconn: | ||
| 1860 | BUF->ttl = UIP_TTL; | ||
| 1861 | #if UIP_CONF_IPV6 | ||
| 1862 | /* For IPv6, the IP length field does not include the IPv6 IP header | ||
| 1863 | length. */ | ||
| 1864 | BUF->len[0] = ((uip_len - UIP_IPH_LEN) >> 8); | ||
| 1865 | BUF->len[1] = ((uip_len - UIP_IPH_LEN) & 0xff); | ||
| 1866 | #else /* UIP_CONF_IPV6 */ | ||
| 1867 | BUF->len[0] = (uip_len >> 8); | ||
| 1868 | BUF->len[1] = (uip_len & 0xff); | ||
| 1869 | #endif /* UIP_CONF_IPV6 */ | ||
| 1870 | |||
| 1871 | BUF->urgp[0] = BUF->urgp[1] = 0; | ||
| 1872 | |||
| 1873 | /* Calculate TCP checksum. */ | ||
| 1874 | BUF->tcpchksum = 0; | ||
| 1875 | BUF->tcpchksum = ~(uip_tcpchksum()); | ||
| 1876 | |||
| 1877 | ip_send_nolen: | ||
| 1878 | #if UIP_CONF_IPV6 | ||
| 1879 | BUF->vtc = 0x60; | ||
| 1880 | BUF->tcflow = 0x00; | ||
| 1881 | BUF->flow = 0x00; | ||
| 1882 | #else /* UIP_CONF_IPV6 */ | ||
| 1883 | BUF->vhl = 0x45; | ||
| 1884 | BUF->tos = 0; | ||
| 1885 | BUF->ipoffset[0] = BUF->ipoffset[1] = 0; | ||
| 1886 | ++ipid; | ||
| 1887 | BUF->ipid[0] = ipid >> 8; | ||
| 1888 | BUF->ipid[1] = ipid & 0xff; | ||
| 1889 | /* Calculate IP checksum. */ | ||
| 1890 | BUF->ipchksum = 0; | ||
| 1891 | BUF->ipchksum = ~(uip_ipchksum()); | ||
| 1892 | DEBUG_PRINTF("uip ip_send_nolen: checksum 0x%04x\n", uip_ipchksum()); | ||
| 1893 | #endif /* UIP_CONF_IPV6 */ | ||
| 1894 | UIP_STAT(++uip_stat.tcp.sent); | ||
| 1895 | #if UIP_CONF_IPV6 | ||
| 1896 | send: | ||
| 1897 | #endif /* UIP_CONF_IPV6 */ | ||
| 1898 | DEBUG_PRINTF("Sending packet with length %d (%d)\n", uip_len, | ||
| 1899 | (BUF->len[0] << 8) | BUF->len[1]); | ||
| 1900 | |||
| 1901 | UIP_STAT(++uip_stat.ip.sent); | ||
| 1902 | /* Return and let the caller do the actual transmission. */ | ||
| 1903 | uip_flags = 0; | ||
| 1904 | return; | ||
| 1905 | |||
| 1906 | drop: | ||
| 1907 | uip_len = 0; | ||
| 1908 | uip_flags = 0; | ||
| 1909 | return; | ||
| 1910 | } | ||
| 1911 | /*---------------------------------------------------------------------------*/ | ||
| 1912 | u16_t | ||
| 1913 | htons(u16_t val) | ||
| 1914 | { | ||
| 1915 | return HTONS(val); | ||
| 1916 | } | ||
| 1917 | |||
| 1918 | u32_t | ||
| 1919 | htonl(u32_t val) | ||
| 1920 | { | ||
| 1921 | return HTONL(val); | ||
| 1922 | } | ||
| 1923 | /*---------------------------------------------------------------------------*/ | ||
| 1924 | void | ||
| 1925 | uip_send(const void *data, int len) | ||
| 1926 | { | ||
| 1927 | int copylen; | ||
| 1928 | #define MIN(a,b) ((a) < (b)? (a): (b)) | ||
| 1929 | copylen = MIN(len, UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN - | ||
| 1930 | (int)((char *)uip_sappdata - (char *)&uip_buf[UIP_LLH_LEN + UIP_TCPIP_HLEN])); | ||
| 1931 | if(copylen > 0) { | ||
| 1932 | uip_slen = copylen; | ||
| 1933 | if(data != uip_sappdata) { | ||
| 1934 | memcpy(uip_sappdata, (data), uip_slen); | ||
| 1935 | } | ||
| 1936 | } | ||
| 1937 | } | ||
| 1938 | /*---------------------------------------------------------------------------*/ | ||
| 1939 | /** @} */ | ||
| 1940 | #endif /* UIP_CONF_IPV6 */ | ||
| 1941 | |||
diff --git a/lib/lufa/Projects/Webserver/Lib/uip/uip.h b/lib/lufa/Projects/Webserver/Lib/uip/uip.h deleted file mode 100644 index 7b87a2c77..000000000 --- a/lib/lufa/Projects/Webserver/Lib/uip/uip.h +++ /dev/null | |||
| @@ -1,2130 +0,0 @@ | |||
| 1 | |||
| 2 | /** | ||
| 3 | * \addtogroup uip | ||
| 4 | * @{ | ||
| 5 | */ | ||
| 6 | |||
| 7 | /** | ||
| 8 | * \file | ||
| 9 | * Header file for the uIP TCP/IP stack. | ||
| 10 | * \author Adam Dunkels <adam@dunkels.com> | ||
| 11 | * \author Julien Abeille <jabeille@cisco.com> (IPv6 related code) | ||
| 12 | * \author Mathilde Durvy <mdurvy@cisco.com> (IPv6 related code) | ||
| 13 | * | ||
| 14 | * The uIP TCP/IP stack header file contains definitions for a number | ||
| 15 | * of C macros that are used by uIP programs as well as internal uIP | ||
| 16 | * structures, TCP/IP header structures and function declarations. | ||
| 17 | * | ||
| 18 | */ | ||
| 19 | |||
| 20 | /* | ||
| 21 | * Copyright (c) 2001-2003, Adam Dunkels. | ||
| 22 | * All rights reserved. | ||
| 23 | * | ||
| 24 | * Redistribution and use in source and binary forms, with or without | ||
| 25 | * modification, are permitted provided that the following conditions | ||
| 26 | * are met: | ||
| 27 | * 1. Redistributions of source code must retain the above copyright | ||
| 28 | * notice, this list of conditions and the following disclaimer. | ||
| 29 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 30 | * notice, this list of conditions and the following disclaimer in the | ||
| 31 | * documentation and/or other materials provided with the distribution. | ||
| 32 | * 3. The name of the author may not be used to endorse or promote | ||
| 33 | * products derived from this software without specific prior | ||
| 34 | * written permission. | ||
| 35 | * | ||
| 36 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS | ||
| 37 | * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | ||
| 38 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 39 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | ||
| 40 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 41 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE | ||
| 42 | * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | ||
| 43 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | ||
| 44 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | ||
| 45 | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
| 46 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 47 | * | ||
| 48 | * This file is part of the uIP TCP/IP stack. | ||
| 49 | * | ||
| 50 | * $Id: uip.h,v 1.24 2009/04/06 13:18:50 nvt-se Exp $ | ||
| 51 | * | ||
| 52 | */ | ||
| 53 | |||
| 54 | #ifndef __UIP_H__ | ||
| 55 | #define __UIP_H__ | ||
| 56 | |||
| 57 | #include "uipopt.h" | ||
| 58 | |||
| 59 | /** | ||
| 60 | * Representation of an IP address. | ||
| 61 | * | ||
| 62 | */ | ||
| 63 | #if UIP_CONF_IPV6 | ||
| 64 | typedef union uip_ip6addr_t { | ||
| 65 | u8_t u8[16]; /* Initialiser, must come first!!! */ | ||
| 66 | u16_t u16[8]; | ||
| 67 | } uip_ip6addr_t; | ||
| 68 | |||
| 69 | typedef uip_ip6addr_t uip_ipaddr_t; | ||
| 70 | #else /* UIP_CONF_IPV6 */ | ||
| 71 | typedef union uip_ip4addr_t { | ||
| 72 | u8_t u8[4]; /* Initialiser, must come first!!! */ | ||
| 73 | u16_t u16[2]; | ||
| 74 | #if 0 | ||
| 75 | u32_t u32; | ||
| 76 | #endif | ||
| 77 | } uip_ip4addr_t; | ||
| 78 | typedef uip_ip4addr_t uip_ipaddr_t; | ||
| 79 | #endif /* UIP_CONF_IPV6 */ | ||
| 80 | |||
| 81 | |||
| 82 | /*---------------------------------------------------------------------------*/ | ||
| 83 | |||
| 84 | /** \brief 16 bit 802.15.4 address */ | ||
| 85 | struct uip_802154_shortaddr { | ||
| 86 | u8_t addr[2]; | ||
| 87 | }; | ||
| 88 | /** \brief 64 bit 802.15.4 address */ | ||
| 89 | struct uip_802154_longaddr { | ||
| 90 | u8_t addr[8]; | ||
| 91 | }; | ||
| 92 | |||
| 93 | /** \brief 802.11 address */ | ||
| 94 | struct uip_80211_addr { | ||
| 95 | u8_t addr[6]; | ||
| 96 | }; | ||
| 97 | |||
| 98 | /** \brief 802.3 address */ | ||
| 99 | struct uip_eth_addr { | ||
| 100 | u8_t addr[6]; | ||
| 101 | }; | ||
| 102 | |||
| 103 | #if UIP_CONF_LL_802154 | ||
| 104 | /** \brief 802.15.4 address */ | ||
| 105 | typedef struct uip_802154_longaddr uip_lladdr_t; | ||
| 106 | #define UIP_802154_SHORTADDR_LEN 2 | ||
| 107 | #define UIP_802154_LONGADDR_LEN 8 | ||
| 108 | #define UIP_LLADDR_LEN UIP_802154_LONGADDR_LEN | ||
| 109 | #else /*UIP_CONF_LL_802154*/ | ||
| 110 | #if UIP_CONF_LL_80211 | ||
| 111 | /** \brief 802.11 address */ | ||
| 112 | typedef struct uip_80211_addr uip_lladdr_t; | ||
| 113 | #define UIP_LLADDR_LEN 6 | ||
| 114 | #else /*UIP_CONF_LL_80211*/ | ||
| 115 | /** \brief Ethernet address */ | ||
| 116 | typedef struct uip_eth_addr uip_lladdr_t; | ||
| 117 | #define UIP_LLADDR_LEN 6 | ||
| 118 | #endif /*UIP_CONF_LL_80211*/ | ||
| 119 | #endif /*UIP_CONF_LL_802154*/ | ||
| 120 | |||
| 121 | /*---------------------------------------------------------------------------*/ | ||
| 122 | /* First, the functions that should be called from the | ||
| 123 | * system. Initialization, the periodic timer, and incoming packets are | ||
| 124 | * handled by the following three functions. | ||
| 125 | */ | ||
| 126 | /** | ||
| 127 | * \defgroup uipconffunc uIP configuration functions | ||
| 128 | * @{ | ||
| 129 | * | ||
| 130 | * The uIP configuration functions are used for setting run-time | ||
| 131 | * parameters in uIP such as IP addresses. | ||
| 132 | */ | ||
| 133 | |||
| 134 | /** | ||
| 135 | * Set the IP address of this host. | ||
| 136 | * | ||
| 137 | * The IP address is represented as a 4-byte array where the first | ||
| 138 | * octet of the IP address is put in the first member of the 4-byte | ||
| 139 | * array. | ||
| 140 | * | ||
| 141 | * Example: | ||
| 142 | \code | ||
| 143 | |||
| 144 | uip_ipaddr_t addr; | ||
| 145 | |||
| 146 | uip_ipaddr(&addr, 192,168,1,2); | ||
| 147 | uip_sethostaddr(&addr); | ||
| 148 | |||
| 149 | \endcode | ||
| 150 | * \param addr A pointer to an IP address of type uip_ipaddr_t; | ||
| 151 | * | ||
| 152 | * \sa uip_ipaddr() | ||
| 153 | * | ||
| 154 | * \hideinitializer | ||
| 155 | */ | ||
| 156 | #define uip_sethostaddr(addr) uip_ipaddr_copy(&uip_hostaddr, (addr)) | ||
| 157 | |||
| 158 | /** | ||
| 159 | * Get the IP address of this host. | ||
| 160 | * | ||
| 161 | * The IP address is represented as a 4-byte array where the first | ||
| 162 | * octet of the IP address is put in the first member of the 4-byte | ||
| 163 | * array. | ||
| 164 | * | ||
| 165 | * Example: | ||
| 166 | \code | ||
| 167 | uip_ipaddr_t hostaddr; | ||
| 168 | |||
| 169 | uip_gethostaddr(&hostaddr); | ||
| 170 | \endcode | ||
| 171 | * \param addr A pointer to a uip_ipaddr_t variable that will be | ||
| 172 | * filled in with the currently configured IP address. | ||
| 173 | * | ||
| 174 | * \hideinitializer | ||
| 175 | */ | ||
| 176 | #define uip_gethostaddr(addr) uip_ipaddr_copy((addr), &uip_hostaddr) | ||
| 177 | |||
| 178 | /** | ||
| 179 | * Set the default router's IP address. | ||
| 180 | * | ||
| 181 | * \param addr A pointer to a uip_ipaddr_t variable containing the IP | ||
| 182 | * address of the default router. | ||
| 183 | * | ||
| 184 | * \sa uip_ipaddr() | ||
| 185 | * | ||
| 186 | * \hideinitializer | ||
| 187 | */ | ||
| 188 | #define uip_setdraddr(addr) uip_ipaddr_copy(&uip_draddr, (addr)) | ||
| 189 | |||
| 190 | /** | ||
| 191 | * Set the netmask. | ||
| 192 | * | ||
| 193 | * \param addr A pointer to a uip_ipaddr_t variable containing the IP | ||
| 194 | * address of the netmask. | ||
| 195 | * | ||
| 196 | * \sa uip_ipaddr() | ||
| 197 | * | ||
| 198 | * \hideinitializer | ||
| 199 | */ | ||
| 200 | #define uip_setnetmask(addr) uip_ipaddr_copy(&uip_netmask, (addr)) | ||
| 201 | |||
| 202 | |||
| 203 | /** | ||
| 204 | * Get the default router's IP address. | ||
| 205 | * | ||
| 206 | * \param addr A pointer to a uip_ipaddr_t variable that will be | ||
| 207 | * filled in with the IP address of the default router. | ||
| 208 | * | ||
| 209 | * \hideinitializer | ||
| 210 | */ | ||
| 211 | #define uip_getdraddr(addr) uip_ipaddr_copy((addr), &uip_draddr) | ||
| 212 | |||
| 213 | /** | ||
| 214 | * Get the netmask. | ||
| 215 | * | ||
| 216 | * \param addr A pointer to a uip_ipaddr_t variable that will be | ||
| 217 | * filled in with the value of the netmask. | ||
| 218 | * | ||
| 219 | * \hideinitializer | ||
| 220 | */ | ||
| 221 | #define uip_getnetmask(addr) uip_ipaddr_copy((addr), &uip_netmask) | ||
| 222 | |||
| 223 | /** @} */ | ||
| 224 | |||
| 225 | /** | ||
| 226 | * \defgroup uipinit uIP initialization functions | ||
| 227 | * @{ | ||
| 228 | * | ||
| 229 | * The uIP initialization functions are used for booting uIP. | ||
| 230 | */ | ||
| 231 | |||
| 232 | /** | ||
| 233 | * uIP initialization function. | ||
| 234 | * | ||
| 235 | * This function should be called at boot up to initialize the uIP | ||
| 236 | * TCP/IP stack. | ||
| 237 | */ | ||
| 238 | void uip_init(void); | ||
| 239 | |||
| 240 | /** | ||
| 241 | * uIP initialization function. | ||
| 242 | * | ||
| 243 | * This function may be used at boot time to set the initial ip_id. | ||
| 244 | */ | ||
| 245 | void uip_setipid(u16_t id); | ||
| 246 | |||
| 247 | /** @} */ | ||
| 248 | |||
| 249 | /** | ||
| 250 | * \defgroup uipdevfunc uIP device driver functions | ||
| 251 | * @{ | ||
| 252 | * | ||
| 253 | * These functions are used by a network device driver for interacting | ||
| 254 | * with uIP. | ||
| 255 | */ | ||
| 256 | |||
| 257 | /** | ||
| 258 | * Process an incoming packet. | ||
| 259 | * | ||
| 260 | * This function should be called when the device driver has received | ||
| 261 | * a packet from the network. The packet from the device driver must | ||
| 262 | * be present in the uip_buf buffer, and the length of the packet | ||
| 263 | * should be placed in the uip_len variable. | ||
| 264 | * | ||
| 265 | * When the function returns, there may be an outbound packet placed | ||
| 266 | * in the uip_buf packet buffer. If so, the uip_len variable is set to | ||
| 267 | * the length of the packet. If no packet is to be sent out, the | ||
| 268 | * uip_len variable is set to 0. | ||
| 269 | * | ||
| 270 | * The usual way of calling the function is presented by the source | ||
| 271 | * code below. | ||
| 272 | \code | ||
| 273 | uip_len = devicedriver_poll(); | ||
| 274 | if(uip_len > 0) { | ||
| 275 | uip_input(); | ||
| 276 | if(uip_len > 0) { | ||
| 277 | devicedriver_send(); | ||
| 278 | } | ||
| 279 | } | ||
| 280 | \endcode | ||
| 281 | * | ||
| 282 | * \note If you are writing a uIP device driver that needs ARP | ||
| 283 | * (Address Resolution Protocol), e.g., when running uIP over | ||
| 284 | * Ethernet, you will need to call the uIP ARP code before calling | ||
| 285 | * this function: | ||
| 286 | \code | ||
| 287 | #define BUF ((struct uip_eth_hdr *)&uip_buf[0]) | ||
| 288 | uip_len = ethernet_devicedrver_poll(); | ||
| 289 | if(uip_len > 0) { | ||
| 290 | if(BUF->type == HTONS(UIP_ETHTYPE_IP)) { | ||
| 291 | uip_arp_ipin(); | ||
| 292 | uip_input(); | ||
| 293 | if(uip_len > 0) { | ||
| 294 | uip_arp_out(); | ||
| 295 | ethernet_devicedriver_send(); | ||
| 296 | } | ||
| 297 | } else if(BUF->type == HTONS(UIP_ETHTYPE_ARP)) { | ||
| 298 | uip_arp_arpin(); | ||
| 299 | if(uip_len > 0) { | ||
| 300 | ethernet_devicedriver_send(); | ||
| 301 | } | ||
| 302 | } | ||
| 303 | \endcode | ||
| 304 | * | ||
| 305 | * \hideinitializer | ||
| 306 | */ | ||
| 307 | #define uip_input() uip_process(UIP_DATA) | ||
| 308 | |||
| 309 | |||
| 310 | /** | ||
| 311 | * Periodic processing for a connection identified by its number. | ||
| 312 | * | ||
| 313 | * This function does the necessary periodic processing (timers, | ||
| 314 | * polling) for a uIP TCP connection, and should be called when the | ||
| 315 | * periodic uIP timer goes off. It should be called for every | ||
| 316 | * connection, regardless of whether they are open of closed. | ||
| 317 | * | ||
| 318 | * When the function returns, it may have an outbound packet waiting | ||
| 319 | * for service in the uIP packet buffer, and if so the uip_len | ||
| 320 | * variable is set to a value larger than zero. The device driver | ||
| 321 | * should be called to send out the packet. | ||
| 322 | * | ||
| 323 | * The usual way of calling the function is through a for() loop like | ||
| 324 | * this: | ||
| 325 | \code | ||
| 326 | for(i = 0; i < UIP_CONNS; ++i) { | ||
| 327 | uip_periodic(i); | ||
| 328 | if(uip_len > 0) { | ||
| 329 | devicedriver_send(); | ||
| 330 | } | ||
| 331 | } | ||
| 332 | \endcode | ||
| 333 | * | ||
| 334 | * \note If you are writing a uIP device driver that needs ARP | ||
| 335 | * (Address Resolution Protocol), e.g., when running uIP over | ||
| 336 | * Ethernet, you will need to call the uip_arp_out() function before | ||
| 337 | * calling the device driver: | ||
| 338 | \code | ||
| 339 | for(i = 0; i < UIP_CONNS; ++i) { | ||
| 340 | uip_periodic(i); | ||
| 341 | if(uip_len > 0) { | ||
| 342 | uip_arp_out(); | ||
| 343 | ethernet_devicedriver_send(); | ||
| 344 | } | ||
| 345 | } | ||
| 346 | \endcode | ||
| 347 | * | ||
| 348 | * \param conn The number of the connection which is to be periodically polled. | ||
| 349 | * | ||
| 350 | * \hideinitializer | ||
| 351 | */ | ||
| 352 | #if UIP_TCP | ||
| 353 | #define uip_periodic(conn) do { uip_conn = &uip_conns[conn]; \ | ||
| 354 | uip_process(UIP_TIMER); } while (0) | ||
| 355 | |||
| 356 | /** | ||
| 357 | * | ||
| 358 | * | ||
| 359 | */ | ||
| 360 | #define uip_conn_active(conn) (uip_conns[conn].tcpstateflags != UIP_CLOSED) | ||
| 361 | |||
| 362 | /** | ||
| 363 | * Perform periodic processing for a connection identified by a pointer | ||
| 364 | * to its structure. | ||
| 365 | * | ||
| 366 | * Same as uip_periodic() but takes a pointer to the actual uip_conn | ||
| 367 | * struct instead of an integer as its argument. This function can be | ||
| 368 | * used to force periodic processing of a specific connection. | ||
| 369 | * | ||
| 370 | * \param conn A pointer to the uip_conn struct for the connection to | ||
| 371 | * be processed. | ||
| 372 | * | ||
| 373 | * \hideinitializer | ||
| 374 | */ | ||
| 375 | #define uip_periodic_conn(conn) do { uip_conn = conn; \ | ||
| 376 | uip_process(UIP_TIMER); } while (0) | ||
| 377 | |||
| 378 | /** | ||
| 379 | * Request that a particular connection should be polled. | ||
| 380 | * | ||
| 381 | * Similar to uip_periodic_conn() but does not perform any timer | ||
| 382 | * processing. The application is polled for new data. | ||
| 383 | * | ||
| 384 | * \param conn A pointer to the uip_conn struct for the connection to | ||
| 385 | * be processed. | ||
| 386 | * | ||
| 387 | * \hideinitializer | ||
| 388 | */ | ||
| 389 | #define uip_poll_conn(conn) do { uip_conn = conn; \ | ||
| 390 | uip_process(UIP_POLL_REQUEST); } while (0) | ||
| 391 | |||
| 392 | #endif /* UIP_TCP */ | ||
| 393 | |||
| 394 | #if UIP_UDP | ||
| 395 | /** | ||
| 396 | * Periodic processing for a UDP connection identified by its number. | ||
| 397 | * | ||
| 398 | * This function is essentially the same as uip_periodic(), but for | ||
| 399 | * UDP connections. It is called in a similar fashion as the | ||
| 400 | * uip_periodic() function: | ||
| 401 | \code | ||
| 402 | for(i = 0; i < UIP_UDP_CONNS; i++) { | ||
| 403 | uip_udp_periodic(i); | ||
| 404 | if(uip_len > 0) { | ||
| 405 | devicedriver_send(); | ||
| 406 | } | ||
| 407 | } | ||
| 408 | \endcode | ||
| 409 | * | ||
| 410 | * \note As for the uip_periodic() function, special care has to be | ||
| 411 | * taken when using uIP together with ARP and Ethernet: | ||
| 412 | \code | ||
| 413 | for(i = 0; i < UIP_UDP_CONNS; i++) { | ||
| 414 | uip_udp_periodic(i); | ||
| 415 | if(uip_len > 0) { | ||
| 416 | uip_arp_out(); | ||
| 417 | ethernet_devicedriver_send(); | ||
| 418 | } | ||
| 419 | } | ||
| 420 | \endcode | ||
| 421 | * | ||
| 422 | * \param conn The number of the UDP connection to be processed. | ||
| 423 | * | ||
| 424 | * \hideinitializer | ||
| 425 | */ | ||
| 426 | #define uip_udp_periodic(conn) do { uip_udp_conn = &uip_udp_conns[conn]; \ | ||
| 427 | uip_process(UIP_UDP_TIMER); } while(0) | ||
| 428 | |||
| 429 | /** | ||
| 430 | * Periodic processing for a UDP connection identified by a pointer to | ||
| 431 | * its structure. | ||
| 432 | * | ||
| 433 | * Same as uip_udp_periodic() but takes a pointer to the actual | ||
| 434 | * uip_conn struct instead of an integer as its argument. This | ||
| 435 | * function can be used to force periodic processing of a specific | ||
| 436 | * connection. | ||
| 437 | * | ||
| 438 | * \param conn A pointer to the uip_udp_conn struct for the connection | ||
| 439 | * to be processed. | ||
| 440 | * | ||
| 441 | * \hideinitializer | ||
| 442 | */ | ||
| 443 | #define uip_udp_periodic_conn(conn) do { uip_udp_conn = conn; \ | ||
| 444 | uip_process(UIP_UDP_TIMER); } while(0) | ||
| 445 | #endif /* UIP_UDP */ | ||
| 446 | |||
| 447 | /** \brief Abandon the reassembly of the current packet */ | ||
| 448 | void uip_reass_over(void); | ||
| 449 | |||
| 450 | /** | ||
| 451 | * The uIP packet buffer. | ||
| 452 | * | ||
| 453 | * The uip_buf array is used to hold incoming and outgoing | ||
| 454 | * packets. The device driver should place incoming data into this | ||
| 455 | * buffer. When sending data, the device driver should read the link | ||
| 456 | * level headers and the TCP/IP headers from this buffer. The size of | ||
| 457 | * the link level headers is configured by the UIP_LLH_LEN define. | ||
| 458 | * | ||
| 459 | * \note The application data need not be placed in this buffer, so | ||
| 460 | * the device driver must read it from the place pointed to by the | ||
| 461 | * uip_appdata pointer as illustrated by the following example: | ||
| 462 | \code | ||
| 463 | void | ||
| 464 | devicedriver_send(void) | ||
| 465 | { | ||
| 466 | hwsend(&uip_buf[0], UIP_LLH_LEN); | ||
| 467 | if(uip_len <= UIP_LLH_LEN + UIP_TCPIP_HLEN) { | ||
| 468 | hwsend(&uip_buf[UIP_LLH_LEN], uip_len - UIP_LLH_LEN); | ||
| 469 | } else { | ||
| 470 | hwsend(&uip_buf[UIP_LLH_LEN], UIP_TCPIP_HLEN); | ||
| 471 | hwsend(uip_appdata, uip_len - UIP_TCPIP_HLEN - UIP_LLH_LEN); | ||
| 472 | } | ||
| 473 | } | ||
| 474 | \endcode | ||
| 475 | */ | ||
| 476 | extern u8_t uip_buf[UIP_BUFSIZE+2]; | ||
| 477 | |||
| 478 | |||
| 479 | |||
| 480 | /** @} */ | ||
| 481 | |||
| 482 | /*---------------------------------------------------------------------------*/ | ||
| 483 | /* Functions that are used by the uIP application program. Opening and | ||
| 484 | * closing connections, sending and receiving data, etc. is all | ||
| 485 | * handled by the functions below. | ||
| 486 | */ | ||
| 487 | /** | ||
| 488 | * \defgroup uipappfunc uIP application functions | ||
| 489 | * @{ | ||
| 490 | * | ||
| 491 | * Functions used by an application running of top of uIP. | ||
| 492 | */ | ||
| 493 | |||
| 494 | /** | ||
| 495 | * Start listening to the specified port. | ||
| 496 | * | ||
| 497 | * \note Since this function expects the port number in network byte | ||
| 498 | * order, a conversion using HTONS() or htons() is necessary. | ||
| 499 | * | ||
| 500 | \code | ||
| 501 | uip_listen(HTONS(80)); | ||
| 502 | \endcode | ||
| 503 | * | ||
| 504 | * \param port A 16-bit port number in network byte order. | ||
| 505 | */ | ||
| 506 | void uip_listen(u16_t port); | ||
| 507 | |||
| 508 | /** | ||
| 509 | * Stop listening to the specified port. | ||
| 510 | * | ||
| 511 | * \note Since this function expects the port number in network byte | ||
| 512 | * order, a conversion using HTONS() or htons() is necessary. | ||
| 513 | * | ||
| 514 | \code | ||
| 515 | uip_unlisten(HTONS(80)); | ||
| 516 | \endcode | ||
| 517 | * | ||
| 518 | * \param port A 16-bit port number in network byte order. | ||
| 519 | */ | ||
| 520 | void uip_unlisten(u16_t port); | ||
| 521 | |||
| 522 | /** | ||
| 523 | * Connect to a remote host using TCP. | ||
| 524 | * | ||
| 525 | * This function is used to start a new connection to the specified | ||
| 526 | * port on the specified host. It allocates a new connection identifier, | ||
| 527 | * sets the connection to the SYN_SENT state and sets the | ||
| 528 | * retransmission timer to 0. This will cause a TCP SYN segment to be | ||
| 529 | * sent out the next time this connection is periodically processed, | ||
| 530 | * which usually is done within 0.5 seconds after the call to | ||
| 531 | * uip_connect(). | ||
| 532 | * | ||
| 533 | * \note This function is available only if support for active open | ||
| 534 | * has been configured by defining UIP_ACTIVE_OPEN to 1 in uipopt.h. | ||
| 535 | * | ||
| 536 | * \note Since this function requires the port number to be in network | ||
| 537 | * byte order, a conversion using HTONS() or htons() is necessary. | ||
| 538 | * | ||
| 539 | \code | ||
| 540 | uip_ipaddr_t ipaddr; | ||
| 541 | |||
| 542 | uip_ipaddr(&ipaddr, 192,168,1,2); | ||
| 543 | uip_connect(&ipaddr, HTONS(80)); | ||
| 544 | \endcode | ||
| 545 | * | ||
| 546 | * \param ripaddr The IP address of the remote host. | ||
| 547 | * | ||
| 548 | * \param port A 16-bit port number in network byte order. | ||
| 549 | * | ||
| 550 | * \return A pointer to the uIP connection identifier for the new connection, | ||
| 551 | * or NULL if no connection could be allocated. | ||
| 552 | * | ||
| 553 | */ | ||
| 554 | struct uip_conn *uip_connect(uip_ipaddr_t *ripaddr, u16_t port); | ||
| 555 | |||
| 556 | |||
| 557 | |||
| 558 | /** | ||
| 559 | * \internal | ||
| 560 | * | ||
| 561 | * Check if a connection has outstanding (i.e., unacknowledged) data. | ||
| 562 | * | ||
| 563 | * \param conn A pointer to the uip_conn structure for the connection. | ||
| 564 | * | ||
| 565 | * \hideinitializer | ||
| 566 | */ | ||
| 567 | #define uip_outstanding(conn) ((conn)->len) | ||
| 568 | |||
| 569 | /** | ||
| 570 | * Send data on the current connection. | ||
| 571 | * | ||
| 572 | * This function is used to send out a single segment of TCP | ||
| 573 | * data. Only applications that have been invoked by uIP for event | ||
| 574 | * processing can send data. | ||
| 575 | * | ||
| 576 | * The amount of data that actually is sent out after a call to this | ||
| 577 | * function is determined by the maximum amount of data TCP allows. uIP | ||
| 578 | * will automatically crop the data so that only the appropriate | ||
| 579 | * amount of data is sent. The function uip_mss() can be used to query | ||
| 580 | * uIP for the amount of data that actually will be sent. | ||
| 581 | * | ||
| 582 | * \note This function does not guarantee that the sent data will | ||
| 583 | * arrive at the destination. If the data is lost in the network, the | ||
| 584 | * application will be invoked with the uip_rexmit() event being | ||
| 585 | * set. The application will then have to resend the data using this | ||
| 586 | * function. | ||
| 587 | * | ||
| 588 | * \param data A pointer to the data which is to be sent. | ||
| 589 | * | ||
| 590 | * \param len The maximum amount of data bytes to be sent. | ||
| 591 | * | ||
| 592 | * \hideinitializer | ||
| 593 | */ | ||
| 594 | void uip_send(const void *data, int len); | ||
| 595 | |||
| 596 | /** | ||
| 597 | * The length of any incoming data that is currently available (if available) | ||
| 598 | * in the uip_appdata buffer. | ||
| 599 | * | ||
| 600 | * The test function uip_data() must first be used to check if there | ||
| 601 | * is any data available at all. | ||
| 602 | * | ||
| 603 | * \hideinitializer | ||
| 604 | */ | ||
| 605 | /*void uip_datalen(void);*/ | ||
| 606 | #define uip_datalen() uip_len | ||
| 607 | |||
| 608 | /** | ||
| 609 | * The length of any out-of-band data (urgent data) that has arrived | ||
| 610 | * on the connection. | ||
| 611 | * | ||
| 612 | * \note The configuration parameter UIP_URGDATA must be set for this | ||
| 613 | * function to be enabled. | ||
| 614 | * | ||
| 615 | * \hideinitializer | ||
| 616 | */ | ||
| 617 | #define uip_urgdatalen() uip_urglen | ||
| 618 | |||
| 619 | /** | ||
| 620 | * Close the current connection. | ||
| 621 | * | ||
| 622 | * This function will close the current connection in a nice way. | ||
| 623 | * | ||
| 624 | * \hideinitializer | ||
| 625 | */ | ||
| 626 | #define uip_close() (uip_flags = UIP_CLOSE) | ||
| 627 | |||
| 628 | /** | ||
| 629 | * Abort the current connection. | ||
| 630 | * | ||
| 631 | * This function will abort (reset) the current connection, and is | ||
| 632 | * usually used when an error has occurred that prevents using the | ||
| 633 | * uip_close() function. | ||
| 634 | * | ||
| 635 | * \hideinitializer | ||
| 636 | */ | ||
| 637 | #define uip_abort() (uip_flags = UIP_ABORT) | ||
| 638 | |||
| 639 | /** | ||
| 640 | * Tell the sending host to stop sending data. | ||
| 641 | * | ||
| 642 | * This function will close our receiver's window so that we stop | ||
| 643 | * receiving data for the current connection. | ||
| 644 | * | ||
| 645 | * \hideinitializer | ||
| 646 | */ | ||
| 647 | #define uip_stop() (uip_conn->tcpstateflags |= UIP_STOPPED) | ||
| 648 | |||
| 649 | /** | ||
| 650 | * Find out if the current connection has been previously stopped with | ||
| 651 | * uip_stop(). | ||
| 652 | * | ||
| 653 | * \hideinitializer | ||
| 654 | */ | ||
| 655 | #define uip_stopped(conn) ((conn)->tcpstateflags & UIP_STOPPED) | ||
| 656 | |||
| 657 | /** | ||
| 658 | * Restart the current connection, if is has previously been stopped | ||
| 659 | * with uip_stop(). | ||
| 660 | * | ||
| 661 | * This function will open the receiver's window again so that we | ||
| 662 | * start receiving data for the current connection. | ||
| 663 | * | ||
| 664 | * \hideinitializer | ||
| 665 | */ | ||
| 666 | #define uip_restart() do { uip_flags |= UIP_NEWDATA; \ | ||
| 667 | uip_conn->tcpstateflags &= ~UIP_STOPPED; \ | ||
| 668 | } while(0) | ||
| 669 | |||
| 670 | |||
| 671 | /* uIP tests that can be made to determine in what state the current | ||
| 672 | connection is, and what the application function should do. */ | ||
| 673 | |||
| 674 | /** | ||
| 675 | * Is the current connection a UDP connection? | ||
| 676 | * | ||
| 677 | * This function checks whether the current connection is a UDP connection. | ||
| 678 | * | ||
| 679 | * \hideinitializer | ||
| 680 | * | ||
| 681 | */ | ||
| 682 | #define uip_udpconnection() (uip_conn == NULL) | ||
| 683 | |||
| 684 | /** | ||
| 685 | * Is new incoming data available? | ||
| 686 | * | ||
| 687 | * Will reduce to non-zero if there is new data for the application | ||
| 688 | * present at the uip_appdata pointer. The size of the data is | ||
| 689 | * available through the uip_len variable. | ||
| 690 | * | ||
| 691 | * \hideinitializer | ||
| 692 | */ | ||
| 693 | #define uip_newdata() (uip_flags & UIP_NEWDATA) | ||
| 694 | |||
| 695 | /** | ||
| 696 | * Has previously sent data been acknowledged? | ||
| 697 | * | ||
| 698 | * Will reduce to non-zero if the previously sent data has been | ||
| 699 | * acknowledged by the remote host. This means that the application | ||
| 700 | * can send new data. | ||
| 701 | * | ||
| 702 | * \hideinitializer | ||
| 703 | */ | ||
| 704 | #define uip_acked() (uip_flags & UIP_ACKDATA) | ||
| 705 | |||
| 706 | /** | ||
| 707 | * Has the connection just been connected? | ||
| 708 | * | ||
| 709 | * Reduces to non-zero if the current connection has been connected to | ||
| 710 | * a remote host. This will happen both if the connection has been | ||
| 711 | * actively opened (with uip_connect()) or passively opened (with | ||
| 712 | * uip_listen()). | ||
| 713 | * | ||
| 714 | * \hideinitializer | ||
| 715 | */ | ||
| 716 | #define uip_connected() (uip_flags & UIP_CONNECTED) | ||
| 717 | |||
| 718 | /** | ||
| 719 | * Has the connection been closed by the other end? | ||
| 720 | * | ||
| 721 | * Is non-zero if the connection has been closed by the remote | ||
| 722 | * host. The application may then do the necessary clean-ups. | ||
| 723 | * | ||
| 724 | * \hideinitializer | ||
| 725 | */ | ||
| 726 | #define uip_closed() (uip_flags & UIP_CLOSE) | ||
| 727 | |||
| 728 | /** | ||
| 729 | * Has the connection been aborted by the other end? | ||
| 730 | * | ||
| 731 | * Non-zero if the current connection has been aborted (reset) by the | ||
| 732 | * remote host. | ||
| 733 | * | ||
| 734 | * \hideinitializer | ||
| 735 | */ | ||
| 736 | #define uip_aborted() (uip_flags & UIP_ABORT) | ||
| 737 | |||
| 738 | /** | ||
| 739 | * Has the connection timed out? | ||
| 740 | * | ||
| 741 | * Non-zero if the current connection has been aborted due to too many | ||
| 742 | * retransmissions. | ||
| 743 | * | ||
| 744 | * \hideinitializer | ||
| 745 | */ | ||
| 746 | #define uip_timedout() (uip_flags & UIP_TIMEDOUT) | ||
| 747 | |||
| 748 | /** | ||
| 749 | * Do we need to retransmit previously data? | ||
| 750 | * | ||
| 751 | * Reduces to non-zero if the previously sent data has been lost in | ||
| 752 | * the network, and the application should retransmit it. The | ||
| 753 | * application should send the exact same data as it did the last | ||
| 754 | * time, using the uip_send() function. | ||
| 755 | * | ||
| 756 | * \hideinitializer | ||
| 757 | */ | ||
| 758 | #define uip_rexmit() (uip_flags & UIP_REXMIT) | ||
| 759 | |||
| 760 | /** | ||
| 761 | * Is the connection being polled by uIP? | ||
| 762 | * | ||
| 763 | * Is non-zero if the reason the application is invoked is that the | ||
| 764 | * current connection has been idle for a while and should be | ||
| 765 | * polled. | ||
| 766 | * | ||
| 767 | * The polling event can be used for sending data without having to | ||
| 768 | * wait for the remote host to send data. | ||
| 769 | * | ||
| 770 | * \hideinitializer | ||
| 771 | */ | ||
| 772 | #define uip_poll() (uip_flags & UIP_POLL) | ||
| 773 | |||
| 774 | /** | ||
| 775 | * Get the initial maximum segment size (MSS) of the current | ||
| 776 | * connection. | ||
| 777 | * | ||
| 778 | * \hideinitializer | ||
| 779 | */ | ||
| 780 | #define uip_initialmss() (uip_conn->initialmss) | ||
| 781 | |||
| 782 | /** | ||
| 783 | * Get the current maximum segment size that can be sent on the current | ||
| 784 | * connection. | ||
| 785 | * | ||
| 786 | * The current maximum segment size that can be sent on the | ||
| 787 | * connection is computed from the receiver's window and the MSS of | ||
| 788 | * the connection (which also is available by calling | ||
| 789 | * uip_initialmss()). | ||
| 790 | * | ||
| 791 | * \hideinitializer | ||
| 792 | */ | ||
| 793 | #define uip_mss() (uip_conn->mss) | ||
| 794 | |||
| 795 | /** | ||
| 796 | * Set up a new UDP connection. | ||
| 797 | * | ||
| 798 | * This function sets up a new UDP connection. The function will | ||
| 799 | * automatically allocate an unused local port for the new | ||
| 800 | * connection. However, another port can be chosen by using the | ||
| 801 | * uip_udp_bind() call, after the uip_udp_new() function has been | ||
| 802 | * called. | ||
| 803 | * | ||
| 804 | * Example: | ||
| 805 | \code | ||
| 806 | uip_ipaddr_t addr; | ||
| 807 | struct uip_udp_conn *c; | ||
| 808 | |||
| 809 | uip_ipaddr(&addr, 192,168,2,1); | ||
| 810 | c = uip_udp_new(&addr, HTONS(12345)); | ||
| 811 | if(c != NULL) { | ||
| 812 | uip_udp_bind(c, HTONS(12344)); | ||
| 813 | } | ||
| 814 | \endcode | ||
| 815 | * \param ripaddr The IP address of the remote host. | ||
| 816 | * | ||
| 817 | * \param rport The remote port number in network byte order. | ||
| 818 | * | ||
| 819 | * \return The uip_udp_conn structure for the new connection or NULL | ||
| 820 | * if no connection could be allocated. | ||
| 821 | */ | ||
| 822 | struct uip_udp_conn *uip_udp_new(const uip_ipaddr_t *ripaddr, u16_t rport); | ||
| 823 | |||
| 824 | /** | ||
| 825 | * Removed a UDP connection. | ||
| 826 | * | ||
| 827 | * \param conn A pointer to the uip_udp_conn structure for the connection. | ||
| 828 | * | ||
| 829 | * \hideinitializer | ||
| 830 | */ | ||
| 831 | #define uip_udp_remove(conn) (conn)->lport = 0 | ||
| 832 | |||
| 833 | /** | ||
| 834 | * Bind a UDP connection to a local port. | ||
| 835 | * | ||
| 836 | * \param conn A pointer to the uip_udp_conn structure for the | ||
| 837 | * connection. | ||
| 838 | * | ||
| 839 | * \param port The local port number, in network byte order. | ||
| 840 | * | ||
| 841 | * \hideinitializer | ||
| 842 | */ | ||
| 843 | #define uip_udp_bind(conn, port) (conn)->lport = port | ||
| 844 | |||
| 845 | /** | ||
| 846 | * Send a UDP datagram of length len on the current connection. | ||
| 847 | * | ||
| 848 | * This function can only be called in response to a UDP event (poll | ||
| 849 | * or newdata). The data must be present in the uip_buf buffer, at the | ||
| 850 | * place pointed to by the uip_appdata pointer. | ||
| 851 | * | ||
| 852 | * \param len The length of the data in the uip_buf buffer. | ||
| 853 | * | ||
| 854 | * \hideinitializer | ||
| 855 | */ | ||
| 856 | #define uip_udp_send(len) uip_send((char *)uip_appdata, len) | ||
| 857 | |||
| 858 | /** @} */ | ||
| 859 | |||
| 860 | /* uIP convenience and converting functions. */ | ||
| 861 | |||
| 862 | /** | ||
| 863 | * \defgroup uipconvfunc uIP conversion functions | ||
| 864 | * @{ | ||
| 865 | * | ||
| 866 | * These functions can be used for converting between different data | ||
| 867 | * formats used by uIP. | ||
| 868 | */ | ||
| 869 | |||
| 870 | /** | ||
| 871 | * Convert an IP address to four bytes separated by commas. | ||
| 872 | * | ||
| 873 | * Example: | ||
| 874 | \code | ||
| 875 | uip_ipaddr_t ipaddr; | ||
| 876 | printf("ipaddr=%d.%d.%d.%d\n", uip_ipaddr_to_quad(&ipaddr)); | ||
| 877 | \endcode | ||
| 878 | * | ||
| 879 | * \param a A pointer to a uip_ipaddr_t. | ||
| 880 | * \hideinitializer | ||
| 881 | */ | ||
| 882 | #define uip_ipaddr_to_quad(a) (a)->u8[0],(a)->u8[1],(a)->u8[2],(a)->u8[3] | ||
| 883 | |||
| 884 | /** | ||
| 885 | * Construct an IP address from four bytes. | ||
| 886 | * | ||
| 887 | * This function constructs an IP address of the type that uIP handles | ||
| 888 | * internally from four bytes. The function is handy for specifying IP | ||
| 889 | * addresses to use with e.g. the uip_connect() function. | ||
| 890 | * | ||
| 891 | * Example: | ||
| 892 | \code | ||
| 893 | uip_ipaddr_t ipaddr; | ||
| 894 | struct uip_conn *c; | ||
| 895 | |||
| 896 | uip_ipaddr(&ipaddr, 192,168,1,2); | ||
| 897 | c = uip_connect(&ipaddr, HTONS(80)); | ||
| 898 | \endcode | ||
| 899 | * | ||
| 900 | * \param addr A pointer to a uip_ipaddr_t variable that will be | ||
| 901 | * filled in with the IP address. | ||
| 902 | * | ||
| 903 | * \param addr0 The first octet of the IP address. | ||
| 904 | * \param addr1 The second octet of the IP address. | ||
| 905 | * \param addr2 The third octet of the IP address. | ||
| 906 | * \param addr3 The forth octet of the IP address. | ||
| 907 | * | ||
| 908 | * \hideinitializer | ||
| 909 | */ | ||
| 910 | #define uip_ipaddr(addr, addr0,addr1,addr2,addr3) do { \ | ||
| 911 | (addr)->u8[0] = addr0; \ | ||
| 912 | (addr)->u8[1] = addr1; \ | ||
| 913 | (addr)->u8[2] = addr2; \ | ||
| 914 | (addr)->u8[3] = addr3; \ | ||
| 915 | } while(0) | ||
| 916 | |||
| 917 | /** | ||
| 918 | * Construct an IPv6 address from eight 16-bit words. | ||
| 919 | * | ||
| 920 | * This function constructs an IPv6 address. | ||
| 921 | * | ||
| 922 | * \hideinitializer | ||
| 923 | */ | ||
| 924 | #define uip_ip6addr(addr, addr0,addr1,addr2,addr3,addr4,addr5,addr6,addr7) do { \ | ||
| 925 | (addr)->u16[0] = HTONS(addr0); \ | ||
| 926 | (addr)->u16[1] = HTONS(addr1); \ | ||
| 927 | (addr)->u16[2] = HTONS(addr2); \ | ||
| 928 | (addr)->u16[3] = HTONS(addr3); \ | ||
| 929 | (addr)->u16[4] = HTONS(addr4); \ | ||
| 930 | (addr)->u16[5] = HTONS(addr5); \ | ||
| 931 | (addr)->u16[6] = HTONS(addr6); \ | ||
| 932 | (addr)->u16[7] = HTONS(addr7); \ | ||
| 933 | } while(0) | ||
| 934 | |||
| 935 | /** | ||
| 936 | * Construct an IPv6 address from sixteen 8-bit words. | ||
| 937 | * | ||
| 938 | * This function constructs an IPv6 address. | ||
| 939 | * | ||
| 940 | * \hideinitializer | ||
| 941 | */ | ||
| 942 | #define uip_ip6addr_u8(addr, addr0,addr1,addr2,addr3,addr4,addr5,addr6,addr7,addr8,addr9,addr10,addr11,addr12,addr13,addr14,addr15) do { \ | ||
| 943 | (addr)->u8[0] = addr0; \ | ||
| 944 | (addr)->u8[1] = addr1; \ | ||
| 945 | (addr)->u8[2] = addr2; \ | ||
| 946 | (addr)->u8[3] = addr3; \ | ||
| 947 | (addr)->u8[4] = addr4; \ | ||
| 948 | (addr)->u8[5] = addr5; \ | ||
| 949 | (addr)->u8[6] = addr6; \ | ||
| 950 | (addr)->u8[7] = addr7; \ | ||
| 951 | (addr)->u8[8] = addr8; \ | ||
| 952 | (addr)->u8[9] = addr9; \ | ||
| 953 | (addr)->u8[10] = addr10; \ | ||
| 954 | (addr)->u8[11] = addr11; \ | ||
| 955 | (addr)->u8[12] = addr12; \ | ||
| 956 | (addr)->u8[13] = addr13; \ | ||
| 957 | (addr)->u8[14] = addr14; \ | ||
| 958 | (addr)->u8[15] = addr15; \ | ||
| 959 | } while(0) | ||
| 960 | |||
| 961 | |||
| 962 | /** | ||
| 963 | * Copy an IP address to another IP address. | ||
| 964 | * | ||
| 965 | * Copies an IP address from one place to another. | ||
| 966 | * | ||
| 967 | * Example: | ||
| 968 | \code | ||
| 969 | uip_ipaddr_t ipaddr1, ipaddr2; | ||
| 970 | |||
| 971 | uip_ipaddr(&ipaddr1, 192,16,1,2); | ||
| 972 | uip_ipaddr_copy(&ipaddr2, &ipaddr1); | ||
| 973 | \endcode | ||
| 974 | * | ||
| 975 | * \param dest The destination for the copy. | ||
| 976 | * \param src The source from where to copy. | ||
| 977 | * | ||
| 978 | * \hideinitializer | ||
| 979 | */ | ||
| 980 | #ifndef uip_ipaddr_copy | ||
| 981 | #define uip_ipaddr_copy(dest, src) (*(dest) = *(src)) | ||
| 982 | #endif | ||
| 983 | |||
| 984 | /** | ||
| 985 | * Compare two IP addresses | ||
| 986 | * | ||
| 987 | * Compares two IP addresses. | ||
| 988 | * | ||
| 989 | * Example: | ||
| 990 | \code | ||
| 991 | uip_ipaddr_t ipaddr1, ipaddr2; | ||
| 992 | |||
| 993 | uip_ipaddr(&ipaddr1, 192,16,1,2); | ||
| 994 | if(uip_ipaddr_cmp(&ipaddr2, &ipaddr1)) { | ||
| 995 | printf("They are the same"); | ||
| 996 | } | ||
| 997 | \endcode | ||
| 998 | * | ||
| 999 | * \param addr1 The first IP address. | ||
| 1000 | * \param addr2 The second IP address. | ||
| 1001 | * | ||
| 1002 | * \hideinitializer | ||
| 1003 | */ | ||
| 1004 | #if !UIP_CONF_IPV6 | ||
| 1005 | #define uip_ipaddr_cmp(addr1, addr2) ((addr1)->u16[0] == (addr2)->u16[0] && \ | ||
| 1006 | (addr1)->u16[1] == (addr2)->u16[1]) | ||
| 1007 | #else /* !UIP_CONF_IPV6 */ | ||
| 1008 | #define uip_ipaddr_cmp(addr1, addr2) (memcmp(addr1, addr2, sizeof(uip_ip6addr_t)) == 0) | ||
| 1009 | #endif /* !UIP_CONF_IPV6 */ | ||
| 1010 | |||
| 1011 | /** | ||
| 1012 | * Compare two IP addresses with netmasks | ||
| 1013 | * | ||
| 1014 | * Compares two IP addresses with netmasks. The masks are used to mask | ||
| 1015 | * out the bits that are to be compared. | ||
| 1016 | * | ||
| 1017 | * Example: | ||
| 1018 | \code | ||
| 1019 | uip_ipaddr_t ipaddr1, ipaddr2, mask; | ||
| 1020 | |||
| 1021 | uip_ipaddr(&mask, 255,255,255,0); | ||
| 1022 | uip_ipaddr(&ipaddr1, 192,16,1,2); | ||
| 1023 | uip_ipaddr(&ipaddr2, 192,16,1,3); | ||
| 1024 | if(uip_ipaddr_maskcmp(&ipaddr1, &ipaddr2, &mask)) { | ||
| 1025 | printf("They are the same"); | ||
| 1026 | } | ||
| 1027 | \endcode | ||
| 1028 | * | ||
| 1029 | * \param addr1 The first IP address. | ||
| 1030 | * \param addr2 The second IP address. | ||
| 1031 | * \param mask The netmask. | ||
| 1032 | * | ||
| 1033 | * \hideinitializer | ||
| 1034 | */ | ||
| 1035 | #if !UIP_CONF_IPV6 | ||
| 1036 | #define uip_ipaddr_maskcmp(addr1, addr2, mask) \ | ||
| 1037 | (((((u16_t *)addr1)[0] & ((u16_t *)mask)[0]) == \ | ||
| 1038 | (((u16_t *)addr2)[0] & ((u16_t *)mask)[0])) && \ | ||
| 1039 | ((((u16_t *)addr1)[1] & ((u16_t *)mask)[1]) == \ | ||
| 1040 | (((u16_t *)addr2)[1] & ((u16_t *)mask)[1]))) | ||
| 1041 | #else | ||
| 1042 | #define uip_ipaddr_prefixcmp(addr1, addr2, length) (memcmp(addr1, addr2, length>>3) == 0) | ||
| 1043 | #endif | ||
| 1044 | |||
| 1045 | |||
| 1046 | /** | ||
| 1047 | * Check if an address is a broadcast address for a network. | ||
| 1048 | * | ||
| 1049 | * Checks if an address is the broadcast address for a network. The | ||
| 1050 | * network is defined by an IP address that is on the network and the | ||
| 1051 | * network's netmask. | ||
| 1052 | * | ||
| 1053 | * \param addr The IP address. | ||
| 1054 | * \param netaddr The network's IP address. | ||
| 1055 | * \param netmask The network's netmask. | ||
| 1056 | * | ||
| 1057 | * \hideinitializer | ||
| 1058 | */ | ||
| 1059 | /*#define uip_ipaddr_isbroadcast(addr, netaddr, netmask) | ||
| 1060 | ((uip_ipaddr_t *)(addr)).u16 & ((uip_ipaddr_t *)(addr)).u16*/ | ||
| 1061 | |||
| 1062 | |||
| 1063 | |||
| 1064 | /** | ||
| 1065 | * Mask out the network part of an IP address. | ||
| 1066 | * | ||
| 1067 | * Masks out the network part of an IP address, given the address and | ||
| 1068 | * the netmask. | ||
| 1069 | * | ||
| 1070 | * Example: | ||
| 1071 | \code | ||
| 1072 | uip_ipaddr_t ipaddr1, ipaddr2, netmask; | ||
| 1073 | |||
| 1074 | uip_ipaddr(&ipaddr1, 192,16,1,2); | ||
| 1075 | uip_ipaddr(&netmask, 255,255,255,0); | ||
| 1076 | uip_ipaddr_mask(&ipaddr2, &ipaddr1, &netmask); | ||
| 1077 | \endcode | ||
| 1078 | * | ||
| 1079 | * In the example above, the variable "ipaddr2" will contain the IP | ||
| 1080 | * address 192.168.1.0. | ||
| 1081 | * | ||
| 1082 | * \param dest Where the result is to be placed. | ||
| 1083 | * \param src The IP address. | ||
| 1084 | * \param mask The netmask. | ||
| 1085 | * | ||
| 1086 | * \hideinitializer | ||
| 1087 | */ | ||
| 1088 | #define uip_ipaddr_mask(dest, src, mask) do { \ | ||
| 1089 | ((u16_t *)dest)[0] = ((u16_t *)src)[0] & ((u16_t *)mask)[0]; \ | ||
| 1090 | ((u16_t *)dest)[1] = ((u16_t *)src)[1] & ((u16_t *)mask)[1]; \ | ||
| 1091 | } while(0) | ||
| 1092 | |||
| 1093 | /** | ||
| 1094 | * Pick the first octet of an IP address. | ||
| 1095 | * | ||
| 1096 | * Picks out the first octet of an IP address. | ||
| 1097 | * | ||
| 1098 | * Example: | ||
| 1099 | \code | ||
| 1100 | uip_ipaddr_t ipaddr; | ||
| 1101 | u8_t octet; | ||
| 1102 | |||
| 1103 | uip_ipaddr(&ipaddr, 1,2,3,4); | ||
| 1104 | octet = uip_ipaddr1(&ipaddr); | ||
| 1105 | \endcode | ||
| 1106 | * | ||
| 1107 | * In the example above, the variable "octet" will contain the value 1. | ||
| 1108 | * | ||
| 1109 | * \hideinitializer | ||
| 1110 | */ | ||
| 1111 | #define uip_ipaddr1(addr) ((addr)->u8[0]) | ||
| 1112 | |||
| 1113 | /** | ||
| 1114 | * Pick the second octet of an IP address. | ||
| 1115 | * | ||
| 1116 | * Picks out the second octet of an IP address. | ||
| 1117 | * | ||
| 1118 | * Example: | ||
| 1119 | \code | ||
| 1120 | uip_ipaddr_t ipaddr; | ||
| 1121 | u8_t octet; | ||
| 1122 | |||
| 1123 | uip_ipaddr(&ipaddr, 1,2,3,4); | ||
| 1124 | octet = uip_ipaddr2(&ipaddr); | ||
| 1125 | \endcode | ||
| 1126 | * | ||
| 1127 | * In the example above, the variable "octet" will contain the value 2. | ||
| 1128 | * | ||
| 1129 | * \hideinitializer | ||
| 1130 | */ | ||
| 1131 | #define uip_ipaddr2(addr) ((addr)->u8[1]) | ||
| 1132 | |||
| 1133 | /** | ||
| 1134 | * Pick the third octet of an IP address. | ||
| 1135 | * | ||
| 1136 | * Picks out the third octet of an IP address. | ||
| 1137 | * | ||
| 1138 | * Example: | ||
| 1139 | \code | ||
| 1140 | uip_ipaddr_t ipaddr; | ||
| 1141 | u8_t octet; | ||
| 1142 | |||
| 1143 | uip_ipaddr(&ipaddr, 1,2,3,4); | ||
| 1144 | octet = uip_ipaddr3(&ipaddr); | ||
| 1145 | \endcode | ||
| 1146 | * | ||
| 1147 | * In the example above, the variable "octet" will contain the value 3. | ||
| 1148 | * | ||
| 1149 | * \hideinitializer | ||
| 1150 | */ | ||
| 1151 | #define uip_ipaddr3(addr) ((addr)->u8[2]) | ||
| 1152 | |||
| 1153 | /** | ||
| 1154 | * Pick the fourth octet of an IP address. | ||
| 1155 | * | ||
| 1156 | * Picks out the fourth octet of an IP address. | ||
| 1157 | * | ||
| 1158 | * Example: | ||
| 1159 | \code | ||
| 1160 | uip_ipaddr_t ipaddr; | ||
| 1161 | u8_t octet; | ||
| 1162 | |||
| 1163 | uip_ipaddr(&ipaddr, 1,2,3,4); | ||
| 1164 | octet = uip_ipaddr4(&ipaddr); | ||
| 1165 | \endcode | ||
| 1166 | * | ||
| 1167 | * In the example above, the variable "octet" will contain the value 4. | ||
| 1168 | * | ||
| 1169 | * \hideinitializer | ||
| 1170 | */ | ||
| 1171 | #define uip_ipaddr4(addr) ((addr)->u8[3]) | ||
| 1172 | |||
| 1173 | /** | ||
| 1174 | * Convert 16-bit quantity from host byte order to network byte order. | ||
| 1175 | * | ||
| 1176 | * This macro is primarily used for converting constants from host | ||
| 1177 | * byte order to network byte order. For converting variables to | ||
| 1178 | * network byte order, use the htons() function instead. | ||
| 1179 | * | ||
| 1180 | * \hideinitializer | ||
| 1181 | */ | ||
| 1182 | #ifndef HTONS | ||
| 1183 | # if UIP_BYTE_ORDER == UIP_BIG_ENDIAN | ||
| 1184 | # define HTONS(n) (n) | ||
| 1185 | # define HTONL(n) (n) | ||
| 1186 | # else /* UIP_BYTE_ORDER == UIP_BIG_ENDIAN */ | ||
| 1187 | # define HTONS(n) (u16_t)((((u16_t) (n)) << 8) | (((u16_t) (n)) >> 8)) | ||
| 1188 | # define HTONL(n) (((u32_t)HTONS(n) << 16) | HTONS((u32_t)(n) >> 16)) | ||
| 1189 | # endif /* UIP_BYTE_ORDER == UIP_BIG_ENDIAN */ | ||
| 1190 | #else | ||
| 1191 | #error "HTONS already defined!" | ||
| 1192 | #endif /* HTONS */ | ||
| 1193 | |||
| 1194 | /** | ||
| 1195 | * Convert 16-bit quantity from host byte order to network byte order. | ||
| 1196 | * | ||
| 1197 | * This function is primarily used for converting variables from host | ||
| 1198 | * byte order to network byte order. For converting constants to | ||
| 1199 | * network byte order, use the HTONS() macro instead. | ||
| 1200 | */ | ||
| 1201 | #ifndef htons | ||
| 1202 | u16_t htons(u16_t val); | ||
| 1203 | #endif /* htons */ | ||
| 1204 | #ifndef ntohs | ||
| 1205 | #define ntohs htons | ||
| 1206 | #endif | ||
| 1207 | |||
| 1208 | #ifndef htonl | ||
| 1209 | u32_t htonl(u32_t val); | ||
| 1210 | #endif /* htonl */ | ||
| 1211 | #ifndef ntohl | ||
| 1212 | #define ntohl htonl | ||
| 1213 | #endif | ||
| 1214 | |||
| 1215 | /** @} */ | ||
| 1216 | |||
| 1217 | /** | ||
| 1218 | * Pointer to the application data in the packet buffer. | ||
| 1219 | * | ||
| 1220 | * This pointer points to the application data when the application is | ||
| 1221 | * called. If the application wishes to send data, the application may | ||
| 1222 | * use this space to write the data into before calling uip_send(). | ||
| 1223 | */ | ||
| 1224 | extern void *uip_appdata; | ||
| 1225 | |||
| 1226 | #if UIP_URGDATA > 0 | ||
| 1227 | /* u8_t *uip_urgdata: | ||
| 1228 | * | ||
| 1229 | * This pointer points to any urgent data that has been received. Only | ||
| 1230 | * present if compiled with support for urgent data (UIP_URGDATA). | ||
| 1231 | */ | ||
| 1232 | extern void *uip_urgdata; | ||
| 1233 | #endif /* UIP_URGDATA > 0 */ | ||
| 1234 | |||
| 1235 | |||
| 1236 | /** | ||
| 1237 | * \defgroup uipdrivervars Variables used in uIP device drivers | ||
| 1238 | * @{ | ||
| 1239 | * | ||
| 1240 | * uIP has a few global variables that are used in device drivers for | ||
| 1241 | * uIP. | ||
| 1242 | */ | ||
| 1243 | |||
| 1244 | /** | ||
| 1245 | * The length of the packet in the uip_buf buffer. | ||
| 1246 | * | ||
| 1247 | * The global variable uip_len holds the length of the packet in the | ||
| 1248 | * uip_buf buffer. | ||
| 1249 | * | ||
| 1250 | * When the network device driver calls the uIP input function, | ||
| 1251 | * uip_len should be set to the length of the packet in the uip_buf | ||
| 1252 | * buffer. | ||
| 1253 | * | ||
| 1254 | * When sending packets, the device driver should use the contents of | ||
| 1255 | * the uip_len variable to determine the length of the outgoing | ||
| 1256 | * packet. | ||
| 1257 | * | ||
| 1258 | */ | ||
| 1259 | extern u16_t uip_len; | ||
| 1260 | |||
| 1261 | /** | ||
| 1262 | * The length of the extension headers | ||
| 1263 | */ | ||
| 1264 | extern u8_t uip_ext_len; | ||
| 1265 | /** @} */ | ||
| 1266 | |||
| 1267 | #if UIP_URGDATA > 0 | ||
| 1268 | extern u16_t uip_urglen, uip_surglen; | ||
| 1269 | #endif /* UIP_URGDATA > 0 */ | ||
| 1270 | |||
| 1271 | |||
| 1272 | /** | ||
| 1273 | * Representation of a uIP TCP connection. | ||
| 1274 | * | ||
| 1275 | * The uip_conn structure is used for identifying a connection. All | ||
| 1276 | * but one field in the structure are to be considered read-only by an | ||
| 1277 | * application. The only exception is the appstate field whose purpose | ||
| 1278 | * is to let the application store application-specific state (e.g., | ||
| 1279 | * file pointers) for the connection. The type of this field is | ||
| 1280 | * configured in the "uipopt.h" header file. | ||
| 1281 | */ | ||
| 1282 | struct uip_conn { | ||
| 1283 | uip_ipaddr_t ripaddr; /**< The IP address of the remote host. */ | ||
| 1284 | |||
| 1285 | u16_t lport; /**< The local TCP port, in network byte order. */ | ||
| 1286 | u16_t rport; /**< The local remote TCP port, in network byte | ||
| 1287 | order. */ | ||
| 1288 | |||
| 1289 | u8_t rcv_nxt[4]; /**< The sequence number that we expect to | ||
| 1290 | receive next. */ | ||
| 1291 | u8_t snd_nxt[4]; /**< The sequence number that was last sent by | ||
| 1292 | us. */ | ||
| 1293 | u16_t len; /**< Length of the data that was previously sent. */ | ||
| 1294 | u16_t mss; /**< Current maximum segment size for the | ||
| 1295 | connection. */ | ||
| 1296 | u16_t initialmss; /**< Initial maximum segment size for the | ||
| 1297 | connection. */ | ||
| 1298 | u8_t sa; /**< Retransmission time-out calculation state | ||
| 1299 | variable. */ | ||
| 1300 | u8_t sv; /**< Retransmission time-out calculation state | ||
| 1301 | variable. */ | ||
| 1302 | u8_t rto; /**< Retransmission time-out. */ | ||
| 1303 | u8_t tcpstateflags; /**< TCP state and flags. */ | ||
| 1304 | u8_t timer; /**< The retransmission timer. */ | ||
| 1305 | u8_t nrtx; /**< The number of retransmissions for the last | ||
| 1306 | segment sent. */ | ||
| 1307 | |||
| 1308 | /** The application state. */ | ||
| 1309 | uip_tcp_appstate_t appstate; | ||
| 1310 | }; | ||
| 1311 | |||
| 1312 | |||
| 1313 | /** | ||
| 1314 | * Pointer to the current TCP connection. | ||
| 1315 | * | ||
| 1316 | * The uip_conn pointer can be used to access the current TCP | ||
| 1317 | * connection. | ||
| 1318 | */ | ||
| 1319 | |||
| 1320 | extern struct uip_conn *uip_conn; | ||
| 1321 | #if UIP_TCP | ||
| 1322 | /* The array containing all uIP connections. */ | ||
| 1323 | extern struct uip_conn uip_conns[UIP_CONNS]; | ||
| 1324 | #endif | ||
| 1325 | |||
| 1326 | /** | ||
| 1327 | * \addtogroup uiparch | ||
| 1328 | * @{ | ||
| 1329 | */ | ||
| 1330 | |||
| 1331 | /** | ||
| 1332 | * 4-byte array used for the 32-bit sequence number calculations. | ||
| 1333 | */ | ||
| 1334 | extern u8_t uip_acc32[4]; | ||
| 1335 | /** @} */ | ||
| 1336 | |||
| 1337 | /** | ||
| 1338 | * Representation of a uIP UDP connection. | ||
| 1339 | */ | ||
| 1340 | struct uip_udp_conn { | ||
| 1341 | uip_ipaddr_t ripaddr; /**< The IP address of the remote peer. */ | ||
| 1342 | u16_t lport; /**< The local port number in network byte order. */ | ||
| 1343 | u16_t rport; /**< The remote port number in network byte order. */ | ||
| 1344 | u8_t ttl; /**< Default time-to-live. */ | ||
| 1345 | |||
| 1346 | /** The application state. */ | ||
| 1347 | uip_udp_appstate_t appstate; | ||
| 1348 | }; | ||
| 1349 | |||
| 1350 | /** | ||
| 1351 | * The current UDP connection. | ||
| 1352 | */ | ||
| 1353 | extern struct uip_udp_conn *uip_udp_conn; | ||
| 1354 | extern struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS]; | ||
| 1355 | |||
| 1356 | struct uip_router { | ||
| 1357 | int (*activate)(void); | ||
| 1358 | int (*deactivate)(void); | ||
| 1359 | uip_ipaddr_t *(*lookup)(uip_ipaddr_t *destipaddr, uip_ipaddr_t *nexthop); | ||
| 1360 | }; | ||
| 1361 | |||
| 1362 | #if UIP_CONF_ROUTER | ||
| 1363 | extern const struct uip_router *uip_router; | ||
| 1364 | |||
| 1365 | /** | ||
| 1366 | * uIP routing driver registration function. | ||
| 1367 | */ | ||
| 1368 | void uip_router_register(const struct uip_router *router); | ||
| 1369 | #endif /*UIP_CONF_ROUTER*/ | ||
| 1370 | |||
| 1371 | #if UIP_CONF_ICMP6 | ||
| 1372 | struct uip_icmp6_conn { | ||
| 1373 | uip_icmp6_appstate_t appstate; | ||
| 1374 | }; | ||
| 1375 | extern struct uip_icmp6_conn uip_icmp6_conns; | ||
| 1376 | #endif /*UIP_CONF_ICMP6*/ | ||
| 1377 | |||
| 1378 | /** | ||
| 1379 | * The uIP TCP/IP statistics. | ||
| 1380 | * | ||
| 1381 | * This is the variable in which the uIP TCP/IP statistics are gathered. | ||
| 1382 | */ | ||
| 1383 | #if UIP_STATISTICS == 1 | ||
| 1384 | extern struct uip_stats uip_stat; | ||
| 1385 | #define UIP_STAT(s) s | ||
| 1386 | #else | ||
| 1387 | #define UIP_STAT(s) | ||
| 1388 | #endif /* UIP_STATISTICS == 1 */ | ||
| 1389 | |||
| 1390 | /** | ||
| 1391 | * The structure holding the TCP/IP statistics that are gathered if | ||
| 1392 | * UIP_STATISTICS is set to 1. | ||
| 1393 | * | ||
| 1394 | */ | ||
| 1395 | struct uip_stats { | ||
| 1396 | struct { | ||
| 1397 | uip_stats_t recv; /**< Number of received packets at the IP | ||
| 1398 | layer. */ | ||
| 1399 | uip_stats_t sent; /**< Number of sent packets at the IP | ||
| 1400 | layer. */ | ||
| 1401 | uip_stats_t forwarded;/**< Number of forwarded packets at the IP | ||
| 1402 | layer. */ | ||
| 1403 | uip_stats_t drop; /**< Number of dropped packets at the IP | ||
| 1404 | layer. */ | ||
| 1405 | uip_stats_t vhlerr; /**< Number of packets dropped due to wrong | ||
| 1406 | IP version or header length. */ | ||
| 1407 | uip_stats_t hblenerr; /**< Number of packets dropped due to wrong | ||
| 1408 | IP length, high byte. */ | ||
| 1409 | uip_stats_t lblenerr; /**< Number of packets dropped due to wrong | ||
| 1410 | IP length, low byte. */ | ||
| 1411 | uip_stats_t fragerr; /**< Number of packets dropped since they | ||
| 1412 | were IP fragments. */ | ||
| 1413 | uip_stats_t chkerr; /**< Number of packets dropped due to IP | ||
| 1414 | checksum errors. */ | ||
| 1415 | uip_stats_t protoerr; /**< Number of packets dropped since they | ||
| 1416 | were neither ICMP, UDP nor TCP. */ | ||
| 1417 | } ip; /**< IP statistics. */ | ||
| 1418 | struct { | ||
| 1419 | uip_stats_t recv; /**< Number of received ICMP packets. */ | ||
| 1420 | uip_stats_t sent; /**< Number of sent ICMP packets. */ | ||
| 1421 | uip_stats_t drop; /**< Number of dropped ICMP packets. */ | ||
| 1422 | uip_stats_t typeerr; /**< Number of ICMP packets with a wrong | ||
| 1423 | type. */ | ||
| 1424 | uip_stats_t chkerr; /**< Number of ICMP packets with a bad | ||
| 1425 | checksum. */ | ||
| 1426 | } icmp; /**< ICMP statistics. */ | ||
| 1427 | #if UIP_TCP | ||
| 1428 | struct { | ||
| 1429 | uip_stats_t recv; /**< Number of received TCP segments. */ | ||
| 1430 | uip_stats_t sent; /**< Number of sent TCP segments. */ | ||
| 1431 | uip_stats_t drop; /**< Number of dropped TCP segments. */ | ||
| 1432 | uip_stats_t chkerr; /**< Number of TCP segments with a bad | ||
| 1433 | checksum. */ | ||
| 1434 | uip_stats_t ackerr; /**< Number of TCP segments with a bad ACK | ||
| 1435 | number. */ | ||
| 1436 | uip_stats_t rst; /**< Number of received TCP RST (reset) segments. */ | ||
| 1437 | uip_stats_t rexmit; /**< Number of retransmitted TCP segments. */ | ||
| 1438 | uip_stats_t syndrop; /**< Number of dropped SYNs due to too few | ||
| 1439 | connections was available. */ | ||
| 1440 | uip_stats_t synrst; /**< Number of SYNs for closed ports, | ||
| 1441 | triggering a RST. */ | ||
| 1442 | } tcp; /**< TCP statistics. */ | ||
| 1443 | #endif | ||
| 1444 | #if UIP_UDP | ||
| 1445 | struct { | ||
| 1446 | uip_stats_t drop; /**< Number of dropped UDP segments. */ | ||
| 1447 | uip_stats_t recv; /**< Number of received UDP segments. */ | ||
| 1448 | uip_stats_t sent; /**< Number of sent UDP segments. */ | ||
| 1449 | uip_stats_t chkerr; /**< Number of UDP segments with a bad | ||
| 1450 | checksum. */ | ||
| 1451 | } udp; /**< UDP statistics. */ | ||
| 1452 | #endif /* UIP_UDP */ | ||
| 1453 | #if UIP_CONF_IPV6 | ||
| 1454 | struct { | ||
| 1455 | uip_stats_t drop; /**< Number of dropped ND6 packets. */ | ||
| 1456 | uip_stats_t recv; /**< Number of received ND6 packets */ | ||
| 1457 | uip_stats_t sent; /**< Number of sent ND6 packets */ | ||
| 1458 | } nd6; | ||
| 1459 | #endif /*UIP_CONF_IPV6*/ | ||
| 1460 | }; | ||
| 1461 | |||
| 1462 | |||
| 1463 | /*---------------------------------------------------------------------------*/ | ||
| 1464 | /* All the stuff below this point is internal to uIP and should not be | ||
| 1465 | * used directly by an application or by a device driver. | ||
| 1466 | */ | ||
| 1467 | /*---------------------------------------------------------------------------*/ | ||
| 1468 | |||
| 1469 | |||
| 1470 | |||
| 1471 | /* u8_t uip_flags: | ||
| 1472 | * | ||
| 1473 | * When the application is called, uip_flags will contain the flags | ||
| 1474 | * that are defined in this file. Please read below for more | ||
| 1475 | * information. | ||
| 1476 | */ | ||
| 1477 | extern u8_t uip_flags; | ||
| 1478 | |||
| 1479 | /* The following flags may be set in the global variable uip_flags | ||
| 1480 | before calling the application callback. The UIP_ACKDATA, | ||
| 1481 | UIP_NEWDATA, and UIP_CLOSE flags may both be set at the same time, | ||
| 1482 | whereas the others are mutually exclusive. Note that these flags | ||
| 1483 | should *NOT* be accessed directly, but only through the uIP | ||
| 1484 | functions/macros. */ | ||
| 1485 | |||
| 1486 | #define UIP_ACKDATA 1 /* Signifies that the outstanding data was | ||
| 1487 | acked and the application should send | ||
| 1488 | out new data instead of retransmitting | ||
| 1489 | the last data. */ | ||
| 1490 | #define UIP_NEWDATA 2 /* Flags the fact that the peer has sent | ||
| 1491 | us new data. */ | ||
| 1492 | #define UIP_REXMIT 4 /* Tells the application to retransmit the | ||
| 1493 | data that was last sent. */ | ||
| 1494 | #define UIP_POLL 8 /* Used for polling the application, to | ||
| 1495 | check if the application has data that | ||
| 1496 | it wants to send. */ | ||
| 1497 | #define UIP_CLOSE 16 /* The remote host has closed the | ||
| 1498 | connection, thus the connection has | ||
| 1499 | gone away. Or the application signals | ||
| 1500 | that it wants to close the | ||
| 1501 | connection. */ | ||
| 1502 | #define UIP_ABORT 32 /* The remote host has aborted the | ||
| 1503 | connection, thus the connection has | ||
| 1504 | gone away. Or the application signals | ||
| 1505 | that it wants to abort the | ||
| 1506 | connection. */ | ||
| 1507 | #define UIP_CONNECTED 64 /* We have got a connection from a remote | ||
| 1508 | host and have set up a new connection | ||
| 1509 | for it, or an active connection has | ||
| 1510 | been successfully established. */ | ||
| 1511 | |||
| 1512 | #define UIP_TIMEDOUT 128 /* The connection has been aborted due to | ||
| 1513 | too many retransmissions. */ | ||
| 1514 | |||
| 1515 | |||
| 1516 | /** | ||
| 1517 | * \brief process the options within a hop by hop or destination option header | ||
| 1518 | * \retval 0: nothing to send, | ||
| 1519 | * \retval 1: drop pkt | ||
| 1520 | * \retval 2: ICMP error message to send | ||
| 1521 | */ | ||
| 1522 | /*static u8_t | ||
| 1523 | uip_ext_hdr_options_process(); */ | ||
| 1524 | |||
| 1525 | /* uip_process(flag): | ||
| 1526 | * | ||
| 1527 | * The actual uIP function which does all the work. | ||
| 1528 | */ | ||
| 1529 | void uip_process(u8_t flag); | ||
| 1530 | |||
| 1531 | /* The following flags are passed as an argument to the uip_process() | ||
| 1532 | function. They are used to distinguish between the two cases where | ||
| 1533 | uip_process() is called. It can be called either because we have | ||
| 1534 | incoming data that should be processed, or because the periodic | ||
| 1535 | timer has fired. These values are never used directly, but only in | ||
| 1536 | the macros defined in this file. */ | ||
| 1537 | |||
| 1538 | #define UIP_DATA 1 /* Tells uIP that there is incoming | ||
| 1539 | data in the uip_buf buffer. The | ||
| 1540 | length of the data is stored in the | ||
| 1541 | global variable uip_len. */ | ||
| 1542 | #define UIP_TIMER 2 /* Tells uIP that the periodic timer | ||
| 1543 | has fired. */ | ||
| 1544 | #define UIP_POLL_REQUEST 3 /* Tells uIP that a connection should | ||
| 1545 | be polled. */ | ||
| 1546 | #define UIP_UDP_SEND_CONN 4 /* Tells uIP that a UDP datagram | ||
| 1547 | should be constructed in the | ||
| 1548 | uip_buf buffer. */ | ||
| 1549 | #if UIP_UDP | ||
| 1550 | #define UIP_UDP_TIMER 5 | ||
| 1551 | #endif /* UIP_UDP */ | ||
| 1552 | |||
| 1553 | /* The TCP states used in the uip_conn->tcpstateflags. */ | ||
| 1554 | #define UIP_CLOSED 0 | ||
| 1555 | #define UIP_SYN_RCVD 1 | ||
| 1556 | #define UIP_SYN_SENT 2 | ||
| 1557 | #define UIP_ESTABLISHED 3 | ||
| 1558 | #define UIP_FIN_WAIT_1 4 | ||
| 1559 | #define UIP_FIN_WAIT_2 5 | ||
| 1560 | #define UIP_CLOSING 6 | ||
| 1561 | #define UIP_TIME_WAIT 7 | ||
| 1562 | #define UIP_LAST_ACK 8 | ||
| 1563 | #define UIP_TS_MASK 15 | ||
| 1564 | |||
| 1565 | #define UIP_STOPPED 16 | ||
| 1566 | |||
| 1567 | /* The TCP and IP headers. */ | ||
| 1568 | struct uip_tcpip_hdr { | ||
| 1569 | #if UIP_CONF_IPV6 | ||
| 1570 | /* IPv6 header. */ | ||
| 1571 | u8_t vtc, | ||
| 1572 | tcflow; | ||
| 1573 | u16_t flow; | ||
| 1574 | u8_t len[2]; | ||
| 1575 | u8_t proto, ttl; | ||
| 1576 | uip_ip6addr_t srcipaddr, destipaddr; | ||
| 1577 | #else /* UIP_CONF_IPV6 */ | ||
| 1578 | /* IPv4 header. */ | ||
| 1579 | u8_t vhl, | ||
| 1580 | tos, | ||
| 1581 | len[2], | ||
| 1582 | ipid[2], | ||
| 1583 | ipoffset[2], | ||
| 1584 | ttl, | ||
| 1585 | proto; | ||
| 1586 | u16_t ipchksum; | ||
| 1587 | uip_ipaddr_t srcipaddr, destipaddr; | ||
| 1588 | #endif /* UIP_CONF_IPV6 */ | ||
| 1589 | |||
| 1590 | /* TCP header. */ | ||
| 1591 | u16_t srcport, | ||
| 1592 | destport; | ||
| 1593 | u8_t seqno[4], | ||
| 1594 | ackno[4], | ||
| 1595 | tcpoffset, | ||
| 1596 | flags, | ||
| 1597 | wnd[2]; | ||
| 1598 | u16_t tcpchksum; | ||
| 1599 | u8_t urgp[2]; | ||
| 1600 | u8_t optdata[4]; | ||
| 1601 | }; | ||
| 1602 | |||
| 1603 | /* The ICMP and IP headers. */ | ||
| 1604 | struct uip_icmpip_hdr { | ||
| 1605 | #if UIP_CONF_IPV6 | ||
| 1606 | /* IPv6 header. */ | ||
| 1607 | u8_t vtc, | ||
| 1608 | tcf; | ||
| 1609 | u16_t flow; | ||
| 1610 | u8_t len[2]; | ||
| 1611 | u8_t proto, ttl; | ||
| 1612 | uip_ip6addr_t srcipaddr, destipaddr; | ||
| 1613 | #else /* UIP_CONF_IPV6 */ | ||
| 1614 | /* IPv4 header. */ | ||
| 1615 | u8_t vhl, | ||
| 1616 | tos, | ||
| 1617 | len[2], | ||
| 1618 | ipid[2], | ||
| 1619 | ipoffset[2], | ||
| 1620 | ttl, | ||
| 1621 | proto; | ||
| 1622 | u16_t ipchksum; | ||
| 1623 | uip_ipaddr_t srcipaddr, destipaddr; | ||
| 1624 | #endif /* UIP_CONF_IPV6 */ | ||
| 1625 | |||
| 1626 | /* ICMP header. */ | ||
| 1627 | u8_t type, icode; | ||
| 1628 | u16_t icmpchksum; | ||
| 1629 | #if !UIP_CONF_IPV6 | ||
| 1630 | u16_t id, seqno; | ||
| 1631 | u8_t payload[1]; | ||
| 1632 | #endif /* !UIP_CONF_IPV6 */ | ||
| 1633 | }; | ||
| 1634 | |||
| 1635 | |||
| 1636 | /* The UDP and IP headers. */ | ||
| 1637 | struct uip_udpip_hdr { | ||
| 1638 | #if UIP_CONF_IPV6 | ||
| 1639 | /* IPv6 header. */ | ||
| 1640 | u8_t vtc, | ||
| 1641 | tcf; | ||
| 1642 | u16_t flow; | ||
| 1643 | u8_t len[2]; | ||
| 1644 | u8_t proto, ttl; | ||
| 1645 | uip_ip6addr_t srcipaddr, destipaddr; | ||
| 1646 | #else /* UIP_CONF_IPV6 */ | ||
| 1647 | /* IP header. */ | ||
| 1648 | u8_t vhl, | ||
| 1649 | tos, | ||
| 1650 | len[2], | ||
| 1651 | ipid[2], | ||
| 1652 | ipoffset[2], | ||
| 1653 | ttl, | ||
| 1654 | proto; | ||
| 1655 | u16_t ipchksum; | ||
| 1656 | uip_ipaddr_t srcipaddr, destipaddr; | ||
| 1657 | #endif /* UIP_CONF_IPV6 */ | ||
| 1658 | |||
| 1659 | /* UDP header. */ | ||
| 1660 | u16_t srcport, | ||
| 1661 | destport; | ||
| 1662 | u16_t udplen; | ||
| 1663 | u16_t udpchksum; | ||
| 1664 | }; | ||
| 1665 | |||
| 1666 | /* | ||
| 1667 | * In IPv6 the length of the L3 headers before the transport header is | ||
| 1668 | * not fixed, due to the possibility to include extension option headers | ||
| 1669 | * after the IP header. hence we split here L3 and L4 headers | ||
| 1670 | */ | ||
| 1671 | /* The IP header */ | ||
| 1672 | struct uip_ip_hdr { | ||
| 1673 | #if UIP_CONF_IPV6 | ||
| 1674 | /* IPV6 header */ | ||
| 1675 | u8_t vtc; | ||
| 1676 | u8_t tcflow; | ||
| 1677 | u16_t flow; | ||
| 1678 | u8_t len[2]; | ||
| 1679 | u8_t proto, ttl; | ||
| 1680 | uip_ip6addr_t srcipaddr, destipaddr; | ||
| 1681 | #else /* UIP_CONF_IPV6 */ | ||
| 1682 | /* IPV4 header */ | ||
| 1683 | u8_t vhl, | ||
| 1684 | tos, | ||
| 1685 | len[2], | ||
| 1686 | ipid[2], | ||
| 1687 | ipoffset[2], | ||
| 1688 | ttl, | ||
| 1689 | proto; | ||
| 1690 | u16_t ipchksum; | ||
| 1691 | uip_ipaddr_t srcipaddr, destipaddr; | ||
| 1692 | #endif /* UIP_CONF_IPV6 */ | ||
| 1693 | }; | ||
| 1694 | |||
| 1695 | |||
| 1696 | /* | ||
| 1697 | * IPv6 extension option headers: we are able to process | ||
| 1698 | * the 4 extension headers defined in RFC2460 (IPv6): | ||
| 1699 | * - Hop by hop option header, destination option header: | ||
| 1700 | * These two are not used by any core IPv6 protocol, hence | ||
| 1701 | * we just read them and go to the next. They convey options, | ||
| 1702 | * the options defined in RFC2460 are Pad1 and PadN, which do | ||
| 1703 | * some padding, and that we do not need to read (the length | ||
| 1704 | * field in the header is enough) | ||
| 1705 | * - Routing header: this one is most notably used by MIPv6, | ||
| 1706 | * which we do not implement, hence we just read it and go | ||
| 1707 | * to the next | ||
| 1708 | * - Fragmentation header: we read this header and are able to | ||
| 1709 | * reassemble packets | ||
| 1710 | * | ||
| 1711 | * We do not offer any means to send packets with extension headers | ||
| 1712 | * | ||
| 1713 | * We do not implement Authentication and ESP headers, which are | ||
| 1714 | * used in IPSec and defined in RFC4302,4303,4305,4385 | ||
| 1715 | */ | ||
| 1716 | /* common header part */ | ||
| 1717 | struct uip_ext_hdr { | ||
| 1718 | u8_t next; | ||
| 1719 | u8_t len; | ||
| 1720 | }; | ||
| 1721 | |||
| 1722 | /* Hop by Hop option header */ | ||
| 1723 | struct uip_hbho_hdr { | ||
| 1724 | u8_t next; | ||
| 1725 | u8_t len; | ||
| 1726 | }; | ||
| 1727 | |||
| 1728 | /* destination option header */ | ||
| 1729 | struct uip_desto_hdr { | ||
| 1730 | u8_t next; | ||
| 1731 | u8_t len; | ||
| 1732 | }; | ||
| 1733 | |||
| 1734 | /* We do not define structures for PAD1 and PADN options */ | ||
| 1735 | |||
| 1736 | /* | ||
| 1737 | * routing header | ||
| 1738 | * the routing header as 4 common bytes, then routing header type | ||
| 1739 | * specific data there are several types of routing header. Type 0 was | ||
| 1740 | * deprecated as per RFC5095 most notable other type is 2, used in | ||
| 1741 | * RFC3775 (MIPv6) here we do not implement MIPv6, so we just need to | ||
| 1742 | * parse the 4 first bytes | ||
| 1743 | */ | ||
| 1744 | struct uip_routing_hdr { | ||
| 1745 | u8_t next; | ||
| 1746 | u8_t len; | ||
| 1747 | u8_t routing_type; | ||
| 1748 | u8_t seg_left; | ||
| 1749 | }; | ||
| 1750 | |||
| 1751 | /* fragmentation header */ | ||
| 1752 | struct uip_frag_hdr { | ||
| 1753 | u8_t next; | ||
| 1754 | u8_t res; | ||
| 1755 | u16_t offsetresmore; | ||
| 1756 | u32_t id; | ||
| 1757 | }; | ||
| 1758 | |||
| 1759 | /* | ||
| 1760 | * an option within the destination or hop by hop option headers | ||
| 1761 | * it contains type an length, which is true for all options but PAD1 | ||
| 1762 | */ | ||
| 1763 | struct uip_ext_hdr_opt { | ||
| 1764 | u8_t type; | ||
| 1765 | u8_t len; | ||
| 1766 | }; | ||
| 1767 | |||
| 1768 | /* PADN option */ | ||
| 1769 | struct uip_ext_hdr_opt_padn { | ||
| 1770 | u8_t opt_type; | ||
| 1771 | u8_t opt_len; | ||
| 1772 | }; | ||
| 1773 | |||
| 1774 | /* TCP header */ | ||
| 1775 | struct uip_tcp_hdr { | ||
| 1776 | u16_t srcport; | ||
| 1777 | u16_t destport; | ||
| 1778 | u8_t seqno[4]; | ||
| 1779 | u8_t ackno[4]; | ||
| 1780 | u8_t tcpoffset; | ||
| 1781 | u8_t flags; | ||
| 1782 | u8_t wnd[2]; | ||
| 1783 | u16_t tcpchksum; | ||
| 1784 | u8_t urgp[2]; | ||
| 1785 | u8_t optdata[4]; | ||
| 1786 | }; | ||
| 1787 | |||
| 1788 | /* The ICMP headers. */ | ||
| 1789 | struct uip_icmp_hdr { | ||
| 1790 | u8_t type, icode; | ||
| 1791 | u16_t icmpchksum; | ||
| 1792 | #if !UIP_CONF_IPV6 | ||
| 1793 | u16_t id, seqno; | ||
| 1794 | #endif /* !UIP_CONF_IPV6 */ | ||
| 1795 | }; | ||
| 1796 | |||
| 1797 | |||
| 1798 | /* The UDP headers. */ | ||
| 1799 | struct uip_udp_hdr { | ||
| 1800 | u16_t srcport; | ||
| 1801 | u16_t destport; | ||
| 1802 | u16_t udplen; | ||
| 1803 | u16_t udpchksum; | ||
| 1804 | }; | ||
| 1805 | |||
| 1806 | |||
| 1807 | /** | ||
| 1808 | * The buffer size available for user data in the \ref uip_buf buffer. | ||
| 1809 | * | ||
| 1810 | * This macro holds the available size for user data in the \ref | ||
| 1811 | * uip_buf buffer. The macro is intended to be used for checking | ||
| 1812 | * bounds of available user data. | ||
| 1813 | * | ||
| 1814 | * Example: | ||
| 1815 | \code | ||
| 1816 | snprintf(uip_appdata, UIP_APPDATA_SIZE, "%u\n", i); | ||
| 1817 | \endcode | ||
| 1818 | * | ||
| 1819 | * \hideinitializer | ||
| 1820 | */ | ||
| 1821 | #define UIP_APPDATA_SIZE (UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN) | ||
| 1822 | #define UIP_APPDATA_PTR (void *)&uip_buf[UIP_LLH_LEN + UIP_TCPIP_HLEN] | ||
| 1823 | |||
| 1824 | #define UIP_PROTO_ICMP 1 | ||
| 1825 | #define UIP_PROTO_TCP 6 | ||
| 1826 | #define UIP_PROTO_UDP 17 | ||
| 1827 | #define UIP_PROTO_ICMP6 58 | ||
| 1828 | |||
| 1829 | |||
| 1830 | #if UIP_CONF_IPV6 | ||
| 1831 | /** @{ */ | ||
| 1832 | /** \brief extension headers types */ | ||
| 1833 | #define UIP_PROTO_HBHO 0 | ||
| 1834 | #define UIP_PROTO_DESTO 60 | ||
| 1835 | #define UIP_PROTO_ROUTING 43 | ||
| 1836 | #define UIP_PROTO_FRAG 44 | ||
| 1837 | #define UIP_PROTO_NONE 59 | ||
| 1838 | /** @} */ | ||
| 1839 | |||
| 1840 | /** @{ */ | ||
| 1841 | /** \brief Destination and Hop By Hop extension headers option types */ | ||
| 1842 | #define UIP_EXT_HDR_OPT_PAD1 0 | ||
| 1843 | #define UIP_EXT_HDR_OPT_PADN 1 | ||
| 1844 | /** @} */ | ||
| 1845 | |||
| 1846 | /** @{ */ | ||
| 1847 | /** | ||
| 1848 | * \brief Bitmaps for extension header processing | ||
| 1849 | * | ||
| 1850 | * When processing extension headers, we should record somehow which one we | ||
| 1851 | * see, because you cannot have twice the same header, except for destination | ||
| 1852 | * We store all this in one u8_t bitmap one bit for each header expected. The | ||
| 1853 | * order in the bitmap is the order recommended in RFC2460 | ||
| 1854 | */ | ||
| 1855 | #define UIP_EXT_HDR_BITMAP_HBHO 0x01 | ||
| 1856 | #define UIP_EXT_HDR_BITMAP_DESTO1 0x02 | ||
| 1857 | #define UIP_EXT_HDR_BITMAP_ROUTING 0x04 | ||
| 1858 | #define UIP_EXT_HDR_BITMAP_FRAG 0x08 | ||
| 1859 | #define UIP_EXT_HDR_BITMAP_AH 0x10 | ||
| 1860 | #define UIP_EXT_HDR_BITMAP_ESP 0x20 | ||
| 1861 | #define UIP_EXT_HDR_BITMAP_DESTO2 0x40 | ||
| 1862 | /** @} */ | ||
| 1863 | |||
| 1864 | |||
| 1865 | #endif /* UIP_CONF_IPV6 */ | ||
| 1866 | |||
| 1867 | |||
| 1868 | /* Header sizes. */ | ||
| 1869 | #if UIP_CONF_IPV6 | ||
| 1870 | #define UIP_IPH_LEN 40 | ||
| 1871 | #define UIP_FRAGH_LEN 8 | ||
| 1872 | #else /* UIP_CONF_IPV6 */ | ||
| 1873 | #define UIP_IPH_LEN 20 /* Size of IP header */ | ||
| 1874 | #endif /* UIP_CONF_IPV6 */ | ||
| 1875 | |||
| 1876 | #define UIP_UDPH_LEN 8 /* Size of UDP header */ | ||
| 1877 | #define UIP_TCPH_LEN 20 /* Size of TCP header */ | ||
| 1878 | #ifdef UIP_IPH_LEN | ||
| 1879 | #define UIP_ICMPH_LEN 4 /* Size of ICMP header */ | ||
| 1880 | #endif | ||
| 1881 | #define UIP_IPUDPH_LEN (UIP_UDPH_LEN + UIP_IPH_LEN) /* Size of IP + | ||
| 1882 | * UDP | ||
| 1883 | * header */ | ||
| 1884 | #define UIP_IPTCPH_LEN (UIP_TCPH_LEN + UIP_IPH_LEN) /* Size of IP + | ||
| 1885 | * TCP | ||
| 1886 | * header */ | ||
| 1887 | #define UIP_TCPIP_HLEN UIP_IPTCPH_LEN | ||
| 1888 | #define UIP_IPICMPH_LEN (UIP_IPH_LEN + UIP_ICMPH_LEN) /* size of ICMP | ||
| 1889 | + IP header */ | ||
| 1890 | #define UIP_LLIPH_LEN (UIP_LLH_LEN + UIP_IPH_LEN) /* size of L2 | ||
| 1891 | + IP header */ | ||
| 1892 | #if UIP_CONF_IPV6 | ||
| 1893 | /** | ||
| 1894 | * The sums below are quite used in ND. When used for uip_buf, we | ||
| 1895 | * include link layer length when used for uip_len, we do not, hence | ||
| 1896 | * we need values with and without LLH_LEN we do not use capital | ||
| 1897 | * letters as these values are variable | ||
| 1898 | */ | ||
| 1899 | #define uip_l2_l3_hdr_len (UIP_LLH_LEN + UIP_IPH_LEN + uip_ext_len) | ||
| 1900 | #define uip_l2_l3_icmp_hdr_len (UIP_LLH_LEN + UIP_IPH_LEN + uip_ext_len + UIP_ICMPH_LEN) | ||
| 1901 | #define uip_l3_hdr_len (UIP_IPH_LEN + uip_ext_len) | ||
| 1902 | #define uip_l3_icmp_hdr_len (UIP_IPH_LEN + uip_ext_len + UIP_ICMPH_LEN) | ||
| 1903 | #endif /*UIP_CONF_IPV6*/ | ||
| 1904 | |||
| 1905 | |||
| 1906 | #if UIP_FIXEDADDR | ||
| 1907 | extern const uip_ipaddr_t uip_hostaddr, uip_netmask, uip_draddr; | ||
| 1908 | #else /* UIP_FIXEDADDR */ | ||
| 1909 | extern uip_ipaddr_t uip_hostaddr, uip_netmask, uip_draddr; | ||
| 1910 | #endif /* UIP_FIXEDADDR */ | ||
| 1911 | extern const uip_ipaddr_t uip_broadcast_addr; | ||
| 1912 | extern const uip_ipaddr_t uip_all_zeroes_addr; | ||
| 1913 | |||
| 1914 | #if UIP_FIXEDETHADDR | ||
| 1915 | extern const uip_lladdr_t uip_lladdr; | ||
| 1916 | #else | ||
| 1917 | extern uip_lladdr_t uip_lladdr; | ||
| 1918 | #endif | ||
| 1919 | |||
| 1920 | |||
| 1921 | |||
| 1922 | |||
| 1923 | #ifdef UIP_CONF_IPV6 | ||
| 1924 | /** | ||
| 1925 | * \brief Is IPv6 address a the unspecified address | ||
| 1926 | * a is of type uip_ipaddr_t | ||
| 1927 | */ | ||
| 1928 | #define uip_is_addr_unspecified(a) \ | ||
| 1929 | ((((a)->u16[0]) == 0) && \ | ||
| 1930 | (((a)->u16[1]) == 0) && \ | ||
| 1931 | (((a)->u16[2]) == 0) && \ | ||
| 1932 | (((a)->u16[3]) == 0) && \ | ||
| 1933 | (((a)->u16[4]) == 0) && \ | ||
| 1934 | (((a)->u16[5]) == 0) && \ | ||
| 1935 | (((a)->u16[6]) == 0) && \ | ||
| 1936 | (((a)->u16[7]) == 0)) | ||
| 1937 | |||
| 1938 | /** \brief Is IPv6 address a the link local all-nodes multicast address */ | ||
| 1939 | #define uip_is_addr_linklocal_allnodes_mcast(a) \ | ||
| 1940 | ((((a)->u8[0]) == 0xff) && \ | ||
| 1941 | (((a)->u8[1]) == 0x02) && \ | ||
| 1942 | (((a)->u16[1]) == 0) && \ | ||
| 1943 | (((a)->u16[2]) == 0) && \ | ||
| 1944 | (((a)->u16[3]) == 0) && \ | ||
| 1945 | (((a)->u16[4]) == 0) && \ | ||
| 1946 | (((a)->u16[5]) == 0) && \ | ||
| 1947 | (((a)->u16[6]) == 0) && \ | ||
| 1948 | (((a)->u8[14]) == 0) && \ | ||
| 1949 | (((a)->u8[15]) == 0x01)) | ||
| 1950 | |||
| 1951 | /** \brief set IP address a to unspecified */ | ||
| 1952 | #define uip_create_unspecified(a) uip_ip6addr(a, 0, 0, 0, 0, 0, 0, 0, 0) | ||
| 1953 | |||
| 1954 | /** \brief set IP address a to the link local all-nodes multicast address */ | ||
| 1955 | #define uip_create_linklocal_allnodes_mcast(a) uip_ip6addr(a, 0xff02, 0, 0, 0, 0, 0, 0, 0x0001) | ||
| 1956 | |||
| 1957 | /** \brief set IP address a to the link local all-routers multicast address */ | ||
| 1958 | #define uip_create_linklocal_allrouters_mcast(a) uip_ip6addr(a, 0xff02, 0, 0, 0, 0, 0, 0, 0x0002) | ||
| 1959 | |||
| 1960 | /** | ||
| 1961 | * \brief is addr (a) a solicited node multicast address, see RFC3513 | ||
| 1962 | * a is of type uip_ipaddr_t* | ||
| 1963 | */ | ||
| 1964 | #define uip_is_addr_solicited_node(a) \ | ||
| 1965 | ((((a)->u8[0]) == 0xFF) && \ | ||
| 1966 | (((a)->u8[1]) == 0x02) && \ | ||
| 1967 | (((a)->u16[1]) == 0) && \ | ||
| 1968 | (((a)->u16[2]) == 0) && \ | ||
| 1969 | (((a)->u16[3]) == 0) && \ | ||
| 1970 | (((a)->u16[4]) == 0) && \ | ||
| 1971 | (((a)->u16[5]) == 1) && \ | ||
| 1972 | (((a)->u8[12]) == 0xFF)) | ||
| 1973 | |||
| 1974 | /** | ||
| 1975 | * \briefput in b the solicited node address corresponding to address a | ||
| 1976 | * both a and b are of type uip_ipaddr_t* | ||
| 1977 | * */ | ||
| 1978 | #define uip_create_solicited_node(a, b) \ | ||
| 1979 | (((b)->u8[0]) = 0xFF); \ | ||
| 1980 | (((b)->u8[1]) = 0x02); \ | ||
| 1981 | (((b)->u16[1]) = 0); \ | ||
| 1982 | (((b)->u16[2]) = 0); \ | ||
| 1983 | (((b)->u16[3]) = 0); \ | ||
| 1984 | (((b)->u16[4]) = 0); \ | ||
| 1985 | (((b)->u8[10]) = 0); \ | ||
| 1986 | (((b)->u8[11]) = 0x01); \ | ||
| 1987 | (((b)->u8[12]) = 0xFF); \ | ||
| 1988 | (((b)->u8[13]) = ((a)->u8[13])); \ | ||
| 1989 | (((b)->u16[7]) = ((a)->u16[7])) | ||
| 1990 | |||
| 1991 | /** | ||
| 1992 | * \brief is addr (a) a link local unicast address, see RFC3513 | ||
| 1993 | * i.e. is (a) on prefix FE80::/10 | ||
| 1994 | * a is of type uip_ipaddr_t* | ||
| 1995 | */ | ||
| 1996 | #define uip_is_addr_link_local(a) \ | ||
| 1997 | ((((a)->u8[0]) == 0xFE) && \ | ||
| 1998 | (((a)->u8[1]) == 0x80)) | ||
| 1999 | |||
| 2000 | /** | ||
| 2001 | * \brief was addr (a) forged based on the mac address m | ||
| 2002 | * a type is uip_ipaddr_t | ||
| 2003 | * m type is uiplladdr_t | ||
| 2004 | */ | ||
| 2005 | #if UIP_CONF_LL_802154 | ||
| 2006 | #define uip_is_addr_mac_addr_based(a, m) \ | ||
| 2007 | ((((a)->u8[8]) == (((m)->addr[0]) ^ 0x02)) && \ | ||
| 2008 | (((a)->u8[9]) == (m)->addr[1]) && \ | ||
| 2009 | (((a)->u8[10]) == (m)->addr[2]) && \ | ||
| 2010 | (((a)->u8[11]) == (m)->addr[3]) && \ | ||
| 2011 | (((a)->u8[12]) == (m)->addr[4]) && \ | ||
| 2012 | (((a)->u8[13]) == (m)->addr[5]) && \ | ||
| 2013 | (((a)->u8[14]) == (m)->addr[6]) && \ | ||
| 2014 | (((a)->u8[15]) == (m)->addr[7])) | ||
| 2015 | #else | ||
| 2016 | |||
| 2017 | #define uip_is_addr_mac_addr_based(a, m) \ | ||
| 2018 | ((((a)->u8[8]) == (((m)->addr[0]) | 0x02)) && \ | ||
| 2019 | (((a)->u8[9]) == (m)->addr[1]) && \ | ||
| 2020 | (((a)->u8[10]) == (m)->addr[2]) && \ | ||
| 2021 | (((a)->u8[11]) == 0xff) && \ | ||
| 2022 | (((a)->u8[12]) == 0xfe) && \ | ||
| 2023 | (((a)->u8[13]) == (m)->addr[3]) && \ | ||
| 2024 | (((a)->u8[14]) == (m)->addr[4]) && \ | ||
| 2025 | (((a)->u8[15]) == (m)->addr[5])) | ||
| 2026 | |||
| 2027 | #endif /*UIP_CONF_LL_802154*/ | ||
| 2028 | |||
| 2029 | /** | ||
| 2030 | * \brief is address a multicast address, see RFC 3513 | ||
| 2031 | * a is of type uip_ipaddr_t* | ||
| 2032 | * */ | ||
| 2033 | #define uip_is_addr_mcast(a) \ | ||
| 2034 | (((a)->u8[0]) == 0xFF) | ||
| 2035 | |||
| 2036 | /** | ||
| 2037 | * \brief is group-id of multicast address a | ||
| 2038 | * the all nodes group-id | ||
| 2039 | */ | ||
| 2040 | #define uip_is_mcast_group_id_all_nodes(a) \ | ||
| 2041 | ((((a)->u16[1]) == 0) && \ | ||
| 2042 | (((a)->u16[2]) == 0) && \ | ||
| 2043 | (((a)->u16[3]) == 0) && \ | ||
| 2044 | (((a)->u16[4]) == 0) && \ | ||
| 2045 | (((a)->u16[5]) == 0) && \ | ||
| 2046 | (((a)->u16[6]) == 0) && \ | ||
| 2047 | (((a)->u8[14]) == 0) && \ | ||
| 2048 | (((a)->u8[15]) == 1)) | ||
| 2049 | |||
| 2050 | /** | ||
| 2051 | * \brief is group-id of multicast address a | ||
| 2052 | * the all routers group-id | ||
| 2053 | */ | ||
| 2054 | #define uip_is_mcast_group_id_all_routers(a) \ | ||
| 2055 | ((((a)->u16[1]) == 0) && \ | ||
| 2056 | (((a)->u16[2]) == 0) && \ | ||
| 2057 | (((a)->u16[3]) == 0) && \ | ||
| 2058 | (((a)->u16[4]) == 0) && \ | ||
| 2059 | (((a)->u16[5]) == 0) && \ | ||
| 2060 | (((a)->u16[6]) == 0) && \ | ||
| 2061 | (((a)->u8[14]) == 0) && \ | ||
| 2062 | (((a)->u8[15]) == 2)) | ||
| 2063 | |||
| 2064 | |||
| 2065 | #endif /*UIP_CONF_IPV6*/ | ||
| 2066 | |||
| 2067 | /** | ||
| 2068 | * Calculate the Internet checksum over a buffer. | ||
| 2069 | * | ||
| 2070 | * The Internet checksum is the one's complement of the one's | ||
| 2071 | * complement sum of all 16-bit words in the buffer. | ||
| 2072 | * | ||
| 2073 | * See RFC1071. | ||
| 2074 | * | ||
| 2075 | * \param buf A pointer to the buffer over which the checksum is to be | ||
| 2076 | * computed. | ||
| 2077 | * | ||
| 2078 | * \param len The length of the buffer over which the checksum is to | ||
| 2079 | * be computed. | ||
| 2080 | * | ||
| 2081 | * \return The Internet checksum of the buffer. | ||
| 2082 | */ | ||
| 2083 | u16_t uip_chksum(u16_t *buf, u16_t len); | ||
| 2084 | |||
| 2085 | /** | ||
| 2086 | * Calculate the IP header checksum of the packet header in uip_buf. | ||
| 2087 | * | ||
| 2088 | * The IP header checksum is the Internet checksum of the 20 bytes of | ||
| 2089 | * the IP header. | ||
| 2090 | * | ||
| 2091 | * \return The IP header checksum of the IP header in the uip_buf | ||
| 2092 | * buffer. | ||
| 2093 | */ | ||
| 2094 | u16_t uip_ipchksum(void); | ||
| 2095 | |||
| 2096 | /** | ||
| 2097 | * Calculate the TCP checksum of the packet in uip_buf and uip_appdata. | ||
| 2098 | * | ||
| 2099 | * The TCP checksum is the Internet checksum of data contents of the | ||
| 2100 | * TCP segment, and a pseudo-header as defined in RFC793. | ||
| 2101 | * | ||
| 2102 | * \return The TCP checksum of the TCP segment in uip_buf and pointed | ||
| 2103 | * to by uip_appdata. | ||
| 2104 | */ | ||
| 2105 | u16_t uip_tcpchksum(void); | ||
| 2106 | |||
| 2107 | /** | ||
| 2108 | * Calculate the UDP checksum of the packet in uip_buf and uip_appdata. | ||
| 2109 | * | ||
| 2110 | * The UDP checksum is the Internet checksum of data contents of the | ||
| 2111 | * UDP segment, and a pseudo-header as defined in RFC768. | ||
| 2112 | * | ||
| 2113 | * \return The UDP checksum of the UDP segment in uip_buf and pointed | ||
| 2114 | * to by uip_appdata. | ||
| 2115 | */ | ||
| 2116 | u16_t uip_udpchksum(void); | ||
| 2117 | |||
| 2118 | /** | ||
| 2119 | * Calculate the ICMP checksum of the packet in uip_buf. | ||
| 2120 | * | ||
| 2121 | * \return The ICMP checksum of the ICMP packet in uip_buf | ||
| 2122 | */ | ||
| 2123 | u16_t uip_icmp6chksum(void); | ||
| 2124 | |||
| 2125 | |||
| 2126 | #endif /* __UIP_H__ */ | ||
| 2127 | |||
| 2128 | |||
| 2129 | /** @} */ | ||
| 2130 | |||
diff --git a/lib/lufa/Projects/Webserver/Lib/uip/uip_arp.c b/lib/lufa/Projects/Webserver/Lib/uip/uip_arp.c deleted file mode 100644 index fcb783b14..000000000 --- a/lib/lufa/Projects/Webserver/Lib/uip/uip_arp.c +++ /dev/null | |||
| @@ -1,432 +0,0 @@ | |||
| 1 | /** | ||
| 2 | * \addtogroup uip | ||
| 3 | * @{ | ||
| 4 | */ | ||
| 5 | |||
| 6 | /** | ||
| 7 | * \defgroup uiparp uIP Address Resolution Protocol | ||
| 8 | * @{ | ||
| 9 | * | ||
| 10 | * The Address Resolution Protocol ARP is used for mapping between IP | ||
| 11 | * addresses and link level addresses such as the Ethernet MAC | ||
| 12 | * addresses. ARP uses broadcast queries to ask for the link level | ||
| 13 | * address of a known IP address and the host which is configured with | ||
| 14 | * the IP address for which the query was meant, will respond with its | ||
| 15 | * link level address. | ||
| 16 | * | ||
| 17 | * \note This ARP implementation only supports Ethernet. | ||
| 18 | */ | ||
| 19 | |||
| 20 | /** | ||
| 21 | * \file | ||
| 22 | * Implementation of the ARP Address Resolution Protocol. | ||
| 23 | * \author Adam Dunkels <adam@dunkels.com> | ||
| 24 | * | ||
| 25 | */ | ||
| 26 | |||
| 27 | /* | ||
| 28 | * Copyright (c) 2001-2003, Adam Dunkels. | ||
| 29 | * All rights reserved. | ||
| 30 | * | ||
| 31 | * Redistribution and use in source and binary forms, with or without | ||
| 32 | * modification, are permitted provided that the following conditions | ||
| 33 | * are met: | ||
| 34 | * 1. Redistributions of source code must retain the above copyright | ||
| 35 | * notice, this list of conditions and the following disclaimer. | ||
| 36 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 37 | * notice, this list of conditions and the following disclaimer in the | ||
| 38 | * documentation and/or other materials provided with the distribution. | ||
| 39 | * 3. The name of the author may not be used to endorse or promote | ||
| 40 | * products derived from this software without specific prior | ||
| 41 | * written permission. | ||
| 42 | * | ||
| 43 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS | ||
| 44 | * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | ||
| 45 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 46 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | ||
| 47 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 48 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE | ||
| 49 | * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | ||
| 50 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | ||
| 51 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | ||
| 52 | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
| 53 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 54 | * | ||
| 55 | * This file is part of the uIP TCP/IP stack. | ||
| 56 | * | ||
| 57 | * $Id: uip_arp.c,v 1.5 2008/02/07 01:35:00 adamdunkels Exp $ | ||
| 58 | * | ||
| 59 | */ | ||
| 60 | |||
| 61 | |||
| 62 | #include "uip_arp.h" | ||
| 63 | |||
| 64 | #include <string.h> | ||
| 65 | |||
| 66 | struct arp_hdr { | ||
| 67 | struct uip_eth_hdr ethhdr; | ||
| 68 | u16_t hwtype; | ||
| 69 | u16_t protocol; | ||
| 70 | u8_t hwlen; | ||
| 71 | u8_t protolen; | ||
| 72 | u16_t opcode; | ||
| 73 | struct uip_eth_addr shwaddr; | ||
| 74 | uip_ipaddr_t sipaddr; | ||
| 75 | struct uip_eth_addr dhwaddr; | ||
| 76 | uip_ipaddr_t dipaddr; | ||
| 77 | }; | ||
| 78 | |||
| 79 | struct ethip_hdr { | ||
| 80 | struct uip_eth_hdr ethhdr; | ||
| 81 | /* IP header. */ | ||
| 82 | u8_t vhl, | ||
| 83 | tos, | ||
| 84 | len[2], | ||
| 85 | ipid[2], | ||
| 86 | ipoffset[2], | ||
| 87 | ttl, | ||
| 88 | proto; | ||
| 89 | u16_t ipchksum; | ||
| 90 | uip_ipaddr_t srcipaddr, destipaddr; | ||
| 91 | }; | ||
| 92 | |||
| 93 | #define ARP_REQUEST 1 | ||
| 94 | #define ARP_REPLY 2 | ||
| 95 | |||
| 96 | #define ARP_HWTYPE_ETH 1 | ||
| 97 | |||
| 98 | struct arp_entry { | ||
| 99 | uip_ipaddr_t ipaddr; | ||
| 100 | struct uip_eth_addr ethaddr; | ||
| 101 | u8_t time; | ||
| 102 | }; | ||
| 103 | |||
| 104 | static const struct uip_eth_addr broadcast_ethaddr = | ||
| 105 | {{0xff,0xff,0xff,0xff,0xff,0xff}}; | ||
| 106 | static const u16_t broadcast_ipaddr[2] = {0xffff,0xffff}; | ||
| 107 | |||
| 108 | static struct arp_entry arp_table[UIP_ARPTAB_SIZE]; | ||
| 109 | static uip_ipaddr_t ipaddr; | ||
| 110 | static u8_t i, c; | ||
| 111 | |||
| 112 | static u8_t arptime; | ||
| 113 | static u8_t tmpage; | ||
| 114 | |||
| 115 | #define BUF ((struct arp_hdr *)&uip_buf[0]) | ||
| 116 | #define IPBUF ((struct ethip_hdr *)&uip_buf[0]) | ||
| 117 | |||
| 118 | #define DEBUG 0 | ||
| 119 | #if DEBUG | ||
| 120 | #include <stdio.h> | ||
| 121 | #define PRINTF(...) printf(__VA_ARGS__) | ||
| 122 | #else | ||
| 123 | #define PRINTF(...) | ||
| 124 | #endif | ||
| 125 | |||
| 126 | /*-----------------------------------------------------------------------------------*/ | ||
| 127 | /** | ||
| 128 | * Initialize the ARP module. | ||
| 129 | * | ||
| 130 | */ | ||
| 131 | /*-----------------------------------------------------------------------------------*/ | ||
| 132 | void | ||
| 133 | uip_arp_init(void) | ||
| 134 | { | ||
| 135 | for(i = 0; i < UIP_ARPTAB_SIZE; ++i) { | ||
| 136 | memset(&arp_table[i].ipaddr, 0, 4); | ||
| 137 | } | ||
| 138 | } | ||
| 139 | /*-----------------------------------------------------------------------------------*/ | ||
| 140 | /** | ||
| 141 | * Periodic ARP processing function. | ||
| 142 | * | ||
| 143 | * This function performs periodic timer processing in the ARP module | ||
| 144 | * and should be called at regular intervals. The recommended interval | ||
| 145 | * is 10 seconds between the calls. | ||
| 146 | * | ||
| 147 | */ | ||
| 148 | /*-----------------------------------------------------------------------------------*/ | ||
| 149 | void | ||
| 150 | uip_arp_timer(void) | ||
| 151 | { | ||
| 152 | struct arp_entry *tabptr = NULL; | ||
| 153 | |||
| 154 | ++arptime; | ||
| 155 | for(i = 0; i < UIP_ARPTAB_SIZE; ++i) { | ||
| 156 | tabptr = &arp_table[i]; | ||
| 157 | if(uip_ipaddr_cmp(&tabptr->ipaddr, &uip_all_zeroes_addr) && | ||
| 158 | arptime - tabptr->time >= UIP_ARP_MAXAGE) { | ||
| 159 | memset(&tabptr->ipaddr, 0, 4); | ||
| 160 | } | ||
| 161 | } | ||
| 162 | |||
| 163 | } | ||
| 164 | /*-----------------------------------------------------------------------------------*/ | ||
| 165 | static void | ||
| 166 | uip_arp_update(uip_ipaddr_t *ipaddr, struct uip_eth_addr *ethaddr) | ||
| 167 | { | ||
| 168 | register struct arp_entry *tabptr = NULL; | ||
| 169 | /* Walk through the ARP mapping table and try to find an entry to | ||
| 170 | update. If none is found, the IP -> MAC address mapping is | ||
| 171 | inserted in the ARP table. */ | ||
| 172 | for(i = 0; i < UIP_ARPTAB_SIZE; ++i) { | ||
| 173 | |||
| 174 | tabptr = &arp_table[i]; | ||
| 175 | /* Only check those entries that are actually in use. */ | ||
| 176 | if(!uip_ipaddr_cmp(&tabptr->ipaddr, &uip_all_zeroes_addr)) { | ||
| 177 | |||
| 178 | /* Check if the source IP address of the incoming packet matches | ||
| 179 | the IP address in this ARP table entry. */ | ||
| 180 | if(uip_ipaddr_cmp(ipaddr, &tabptr->ipaddr)) { | ||
| 181 | |||
| 182 | /* An old entry found, update this and return. */ | ||
| 183 | memcpy(tabptr->ethaddr.addr, ethaddr->addr, 6); | ||
| 184 | tabptr->time = arptime; | ||
| 185 | |||
| 186 | return; | ||
| 187 | } | ||
| 188 | } | ||
| 189 | } | ||
| 190 | |||
| 191 | /* If we get here, no existing ARP table entry was found, so we | ||
| 192 | create one. */ | ||
| 193 | |||
| 194 | /* First, we try to find an unused entry in the ARP table. */ | ||
| 195 | for(i = 0; i < UIP_ARPTAB_SIZE; ++i) { | ||
| 196 | tabptr = &arp_table[i]; | ||
| 197 | if(uip_ipaddr_cmp(&tabptr->ipaddr, &uip_all_zeroes_addr)) { | ||
| 198 | break; | ||
| 199 | } | ||
| 200 | } | ||
| 201 | |||
| 202 | /* If no unused entry is found, we try to find the oldest entry and | ||
| 203 | throw it away. */ | ||
| 204 | if(i == UIP_ARPTAB_SIZE) { | ||
| 205 | tmpage = 0; | ||
| 206 | c = 0; | ||
| 207 | for(i = 0; i < UIP_ARPTAB_SIZE; ++i) { | ||
| 208 | tabptr = &arp_table[i]; | ||
| 209 | if(arptime - tabptr->time > tmpage) { | ||
| 210 | tmpage = arptime - tabptr->time; | ||
| 211 | c = i; | ||
| 212 | } | ||
| 213 | } | ||
| 214 | i = c; | ||
| 215 | tabptr = &arp_table[i]; | ||
| 216 | } | ||
| 217 | |||
| 218 | /* Now, i is the ARP table entry which we will fill with the new | ||
| 219 | information. */ | ||
| 220 | uip_ipaddr_copy(&tabptr->ipaddr, ipaddr); | ||
| 221 | memcpy(tabptr->ethaddr.addr, ethaddr->addr, 6); | ||
| 222 | tabptr->time = arptime; | ||
| 223 | } | ||
| 224 | /*-----------------------------------------------------------------------------------*/ | ||
| 225 | /** | ||
| 226 | * ARP processing for incoming IP packets | ||
| 227 | * | ||
| 228 | * This function should be called by the device driver when an IP | ||
| 229 | * packet has been received. The function will check if the address is | ||
| 230 | * in the ARP cache, and if so the ARP cache entry will be | ||
| 231 | * refreshed. If no ARP cache entry was found, a new one is created. | ||
| 232 | * | ||
| 233 | * This function expects an IP packet with a prepended Ethernet header | ||
| 234 | * in the uip_buf[] buffer, and the length of the packet in the global | ||
| 235 | * variable uip_len. | ||
| 236 | */ | ||
| 237 | /*-----------------------------------------------------------------------------------*/ | ||
| 238 | #if 0 | ||
| 239 | void | ||
| 240 | uip_arp_ipin(void) | ||
| 241 | { | ||
| 242 | uip_len -= sizeof(struct uip_eth_hdr); | ||
| 243 | |||
| 244 | /* Only insert/update an entry if the source IP address of the | ||
| 245 | incoming IP packet comes from a host on the local network. */ | ||
| 246 | if((IPBUF->srcipaddr[0] & uip_netmask[0]) != | ||
| 247 | (uip_hostaddr[0] & uip_netmask[0])) { | ||
| 248 | return; | ||
| 249 | } | ||
| 250 | if((IPBUF->srcipaddr[1] & uip_netmask[1]) != | ||
| 251 | (uip_hostaddr[1] & uip_netmask[1])) { | ||
| 252 | return; | ||
| 253 | } | ||
| 254 | uip_arp_update(IPBUF->srcipaddr, &(IPBUF->ethhdr.src)); | ||
| 255 | |||
| 256 | return; | ||
| 257 | } | ||
| 258 | #endif /* 0 */ | ||
| 259 | /*-----------------------------------------------------------------------------------*/ | ||
| 260 | /** | ||
| 261 | * ARP processing for incoming ARP packets. | ||
| 262 | * | ||
| 263 | * This function should be called by the device driver when an ARP | ||
| 264 | * packet has been received. The function will act differently | ||
| 265 | * depending on the ARP packet type: if it is a reply for a request | ||
| 266 | * that we previously sent out, the ARP cache will be filled in with | ||
| 267 | * the values from the ARP reply. If the incoming ARP packet is an ARP | ||
| 268 | * request for our IP address, an ARP reply packet is created and put | ||
| 269 | * into the uip_buf[] buffer. | ||
| 270 | * | ||
| 271 | * When the function returns, the value of the global variable uip_len | ||
| 272 | * indicates whether the device driver should send out a packet or | ||
| 273 | * not. If uip_len is zero, no packet should be sent. If uip_len is | ||
| 274 | * non-zero, it contains the length of the outbound packet that is | ||
| 275 | * present in the uip_buf[] buffer. | ||
| 276 | * | ||
| 277 | * This function expects an ARP packet with a prepended Ethernet | ||
| 278 | * header in the uip_buf[] buffer, and the length of the packet in the | ||
| 279 | * global variable uip_len. | ||
| 280 | */ | ||
| 281 | /*-----------------------------------------------------------------------------------*/ | ||
| 282 | void | ||
| 283 | uip_arp_arpin(void) | ||
| 284 | { | ||
| 285 | if(uip_len < sizeof(struct arp_hdr)) { | ||
| 286 | uip_len = 0; | ||
| 287 | return; | ||
| 288 | } | ||
| 289 | uip_len = 0; | ||
| 290 | |||
| 291 | switch(BUF->opcode) { | ||
| 292 | case HTONS(ARP_REQUEST): | ||
| 293 | /* ARP request. If it asked for our address, we send out a | ||
| 294 | reply. */ | ||
| 295 | /* if(BUF->dipaddr[0] == uip_hostaddr[0] && | ||
| 296 | BUF->dipaddr[1] == uip_hostaddr[1]) {*/ | ||
| 297 | PRINTF("uip_arp_arpin: request for %d.%d.%d.%d (we are %d.%d.%d.%d)\n", | ||
| 298 | BUF->dipaddr.u8[0], BUF->dipaddr.u8[1], | ||
| 299 | BUF->dipaddr.u8[2], BUF->dipaddr.u8[3], | ||
| 300 | uip_hostaddr.u8[0], uip_hostaddr.u8[1], | ||
| 301 | uip_hostaddr.u8[2], uip_hostaddr.u8[3]); | ||
| 302 | if(uip_ipaddr_cmp(&BUF->dipaddr, &uip_hostaddr)) { | ||
| 303 | /* First, we register the one who made the request in our ARP | ||
| 304 | table, since it is likely that we will do more communication | ||
| 305 | with this host in the future. */ | ||
| 306 | uip_arp_update(&BUF->sipaddr, &BUF->shwaddr); | ||
| 307 | |||
| 308 | BUF->opcode = HTONS(ARP_REPLY); | ||
| 309 | |||
| 310 | memcpy(BUF->dhwaddr.addr, BUF->shwaddr.addr, 6); | ||
| 311 | memcpy(BUF->shwaddr.addr, uip_ethaddr.addr, 6); | ||
| 312 | memcpy(BUF->ethhdr.src.addr, uip_ethaddr.addr, 6); | ||
| 313 | memcpy(BUF->ethhdr.dest.addr, BUF->dhwaddr.addr, 6); | ||
| 314 | |||
| 315 | uip_ipaddr_copy(&BUF->dipaddr, &BUF->sipaddr); | ||
| 316 | uip_ipaddr_copy(&BUF->sipaddr, &uip_hostaddr); | ||
| 317 | |||
| 318 | BUF->ethhdr.type = HTONS(UIP_ETHTYPE_ARP); | ||
| 319 | uip_len = sizeof(struct arp_hdr); | ||
| 320 | } | ||
| 321 | break; | ||
| 322 | case HTONS(ARP_REPLY): | ||
| 323 | /* ARP reply. We insert or update the ARP table if it was meant | ||
| 324 | for us. */ | ||
| 325 | if(uip_ipaddr_cmp(&BUF->dipaddr, &uip_hostaddr)) { | ||
| 326 | uip_arp_update(&BUF->sipaddr, &BUF->shwaddr); | ||
| 327 | } | ||
| 328 | break; | ||
| 329 | } | ||
| 330 | |||
| 331 | return; | ||
| 332 | } | ||
| 333 | /*-----------------------------------------------------------------------------------*/ | ||
| 334 | /** | ||
| 335 | * Prepend Ethernet header to an outbound IP packet and see if we need | ||
| 336 | * to send out an ARP request. | ||
| 337 | * | ||
| 338 | * This function should be called before sending out an IP packet. The | ||
| 339 | * function checks the destination IP address of the IP packet to see | ||
| 340 | * what Ethernet MAC address that should be used as a destination MAC | ||
| 341 | * address on the Ethernet. | ||
| 342 | * | ||
| 343 | * If the destination IP address is in the local network (determined | ||
| 344 | * by logical ANDing of netmask and our IP address), the function | ||
| 345 | * checks the ARP cache to see if an entry for the destination IP | ||
| 346 | * address is found. If so, an Ethernet header is prepended and the | ||
| 347 | * function returns. If no ARP cache entry is found for the | ||
| 348 | * destination IP address, the packet in the uip_buf[] is replaced by | ||
| 349 | * an ARP request packet for the IP address. The IP packet is dropped | ||
| 350 | * and it is assumed that they higher level protocols (e.g., TCP) | ||
| 351 | * eventually will retransmit the dropped packet. | ||
| 352 | * | ||
| 353 | * If the destination IP address is not on the local network, the IP | ||
| 354 | * address of the default router is used instead. | ||
| 355 | * | ||
| 356 | * When the function returns, a packet is present in the uip_buf[] | ||
| 357 | * buffer, and the length of the packet is in the global variable | ||
| 358 | * uip_len. | ||
| 359 | */ | ||
| 360 | /*-----------------------------------------------------------------------------------*/ | ||
| 361 | void | ||
| 362 | uip_arp_out(void) | ||
| 363 | { | ||
| 364 | struct arp_entry *tabptr = NULL; | ||
| 365 | |||
| 366 | /* Find the destination IP address in the ARP table and construct | ||
| 367 | the Ethernet header. If the destination IP address isn't on the | ||
| 368 | local network, we use the default router's IP address instead. | ||
| 369 | |||
| 370 | If not ARP table entry is found, we overwrite the original IP | ||
| 371 | packet with an ARP request for the IP address. */ | ||
| 372 | |||
| 373 | /* First check if destination is a local broadcast. */ | ||
| 374 | if(uip_ipaddr_cmp(&IPBUF->destipaddr, &uip_broadcast_addr)) { | ||
| 375 | memcpy(IPBUF->ethhdr.dest.addr, broadcast_ethaddr.addr, 6); | ||
| 376 | } else { | ||
| 377 | /* Check if the destination address is on the local network. */ | ||
| 378 | if(!uip_ipaddr_maskcmp(&IPBUF->destipaddr, &uip_hostaddr, &uip_netmask)) { | ||
| 379 | /* Destination address was not on the local network, so we need to | ||
| 380 | use the default router's IP address instead of the destination | ||
| 381 | address when determining the MAC address. */ | ||
| 382 | uip_ipaddr_copy(&ipaddr, &uip_draddr); | ||
| 383 | } else { | ||
| 384 | /* Else, we use the destination IP address. */ | ||
| 385 | uip_ipaddr_copy(&ipaddr, &IPBUF->destipaddr); | ||
| 386 | } | ||
| 387 | |||
| 388 | for(i = 0; i < UIP_ARPTAB_SIZE; ++i) { | ||
| 389 | tabptr = &arp_table[i]; | ||
| 390 | if(uip_ipaddr_cmp(&ipaddr, &tabptr->ipaddr)) { | ||
| 391 | break; | ||
| 392 | } | ||
| 393 | } | ||
| 394 | |||
| 395 | if(i == UIP_ARPTAB_SIZE) { | ||
| 396 | /* The destination address was not in our ARP table, so we | ||
| 397 | overwrite the IP packet with an ARP request. */ | ||
| 398 | |||
| 399 | memset(BUF->ethhdr.dest.addr, 0xff, 6); | ||
| 400 | memset(BUF->dhwaddr.addr, 0x00, 6); | ||
| 401 | memcpy(BUF->ethhdr.src.addr, uip_ethaddr.addr, 6); | ||
| 402 | memcpy(BUF->shwaddr.addr, uip_ethaddr.addr, 6); | ||
| 403 | |||
| 404 | uip_ipaddr_copy(&BUF->dipaddr, &ipaddr); | ||
| 405 | uip_ipaddr_copy(&BUF->sipaddr, &uip_hostaddr); | ||
| 406 | BUF->opcode = HTONS(ARP_REQUEST); /* ARP request. */ | ||
| 407 | BUF->hwtype = HTONS(ARP_HWTYPE_ETH); | ||
| 408 | BUF->protocol = HTONS(UIP_ETHTYPE_IP); | ||
| 409 | BUF->hwlen = 6; | ||
| 410 | BUF->protolen = 4; | ||
| 411 | BUF->ethhdr.type = HTONS(UIP_ETHTYPE_ARP); | ||
| 412 | |||
| 413 | uip_appdata = &uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN]; | ||
| 414 | |||
| 415 | uip_len = sizeof(struct arp_hdr); | ||
| 416 | return; | ||
| 417 | } | ||
| 418 | |||
| 419 | /* Build an ethernet header. */ | ||
| 420 | memcpy(IPBUF->ethhdr.dest.addr, tabptr->ethaddr.addr, 6); | ||
| 421 | } | ||
| 422 | memcpy(IPBUF->ethhdr.src.addr, uip_ethaddr.addr, 6); | ||
| 423 | |||
| 424 | IPBUF->ethhdr.type = HTONS(UIP_ETHTYPE_IP); | ||
| 425 | |||
| 426 | uip_len += sizeof(struct uip_eth_hdr); | ||
| 427 | } | ||
| 428 | /*-----------------------------------------------------------------------------------*/ | ||
| 429 | |||
| 430 | /** @} */ | ||
| 431 | /** @} */ | ||
| 432 | |||
diff --git a/lib/lufa/Projects/Webserver/Lib/uip/uip_arp.h b/lib/lufa/Projects/Webserver/Lib/uip/uip_arp.h deleted file mode 100644 index 4e78ce7b7..000000000 --- a/lib/lufa/Projects/Webserver/Lib/uip/uip_arp.h +++ /dev/null | |||
| @@ -1,146 +0,0 @@ | |||
| 1 | /** | ||
| 2 | * \addtogroup uip | ||
| 3 | * @{ | ||
| 4 | */ | ||
| 5 | |||
| 6 | /** | ||
| 7 | * \addtogroup uiparp | ||
| 8 | * @{ | ||
| 9 | */ | ||
| 10 | |||
| 11 | /** | ||
| 12 | * \file | ||
| 13 | * Macros and definitions for the ARP module. | ||
| 14 | * \author Adam Dunkels <adam@dunkels.com> | ||
| 15 | */ | ||
| 16 | |||
| 17 | |||
| 18 | /* | ||
| 19 | * Copyright (c) 2001-2003, Adam Dunkels. | ||
| 20 | * All rights reserved. | ||
| 21 | * | ||
| 22 | * Redistribution and use in source and binary forms, with or without | ||
| 23 | * modification, are permitted provided that the following conditions | ||
| 24 | * are met: | ||
| 25 | * 1. Redistributions of source code must retain the above copyright | ||
| 26 | * notice, this list of conditions and the following disclaimer. | ||
| 27 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 28 | * notice, this list of conditions and the following disclaimer in the | ||
| 29 | * documentation and/or other materials provided with the distribution. | ||
| 30 | * 3. The name of the author may not be used to endorse or promote | ||
| 31 | * products derived from this software without specific prior | ||
| 32 | * written permission. | ||
| 33 | * | ||
| 34 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS | ||
| 35 | * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | ||
| 36 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 37 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | ||
| 38 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 39 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE | ||
| 40 | * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | ||
| 41 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | ||
| 42 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | ||
| 43 | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
| 44 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 45 | * | ||
| 46 | * This file is part of the uIP TCP/IP stack. | ||
| 47 | * | ||
| 48 | * $Id: uip_arp.h,v 1.2 2006/08/26 23:58:45 oliverschmidt Exp $ | ||
| 49 | * | ||
| 50 | */ | ||
| 51 | |||
| 52 | #ifndef __UIP_ARP_H__ | ||
| 53 | #define __UIP_ARP_H__ | ||
| 54 | |||
| 55 | #include "uip.h" | ||
| 56 | |||
| 57 | |||
| 58 | extern struct uip_eth_addr uip_ethaddr; | ||
| 59 | |||
| 60 | /** | ||
| 61 | * The Ethernet header. | ||
| 62 | */ | ||
| 63 | struct uip_eth_hdr { | ||
| 64 | struct uip_eth_addr dest; | ||
| 65 | struct uip_eth_addr src; | ||
| 66 | u16_t type; | ||
| 67 | }; | ||
| 68 | |||
| 69 | #define UIP_ETHTYPE_ARP 0x0806 | ||
| 70 | #define UIP_ETHTYPE_IP 0x0800 | ||
| 71 | #define UIP_ETHTYPE_IPV6 0x86dd | ||
| 72 | |||
| 73 | |||
| 74 | /* The uip_arp_init() function must be called before any of the other | ||
| 75 | ARP functions. */ | ||
| 76 | void uip_arp_init(void); | ||
| 77 | |||
| 78 | /* The uip_arp_ipin() function should be called whenever an IP packet | ||
| 79 | arrives from the Ethernet. This function refreshes the ARP table or | ||
| 80 | inserts a new mapping if none exists. The function assumes that an | ||
| 81 | IP packet with an Ethernet header is present in the uip_buf buffer | ||
| 82 | and that the length of the packet is in the uip_len variable. */ | ||
| 83 | /*void uip_arp_ipin(void);*/ | ||
| 84 | #define uip_arp_ipin() | ||
| 85 | |||
| 86 | /* The uip_arp_arpin() should be called when an ARP packet is received | ||
| 87 | by the Ethernet driver. This function also assumes that the | ||
| 88 | Ethernet frame is present in the uip_buf buffer. When the | ||
| 89 | uip_arp_arpin() function returns, the contents of the uip_buf | ||
| 90 | buffer should be sent out on the Ethernet if the uip_len variable | ||
| 91 | is > 0. */ | ||
| 92 | void uip_arp_arpin(void); | ||
| 93 | |||
| 94 | /* The uip_arp_out() function should be called when an IP packet | ||
| 95 | should be sent out on the Ethernet. This function creates an | ||
| 96 | Ethernet header before the IP header in the uip_buf buffer. The | ||
| 97 | Ethernet header will have the correct Ethernet MAC destination | ||
| 98 | address filled in if an ARP table entry for the destination IP | ||
| 99 | address (or the IP address of the default router) is present. If no | ||
| 100 | such table entry is found, the IP packet is overwritten with an ARP | ||
| 101 | request and we rely on TCP to retransmit the packet that was | ||
| 102 | overwritten. In any case, the uip_len variable holds the length of | ||
| 103 | the Ethernet frame that should be transmitted. */ | ||
| 104 | void uip_arp_out(void); | ||
| 105 | |||
| 106 | /* The uip_arp_timer() function should be called every ten seconds. It | ||
| 107 | is responsible for flushing old entries in the ARP table. */ | ||
| 108 | void uip_arp_timer(void); | ||
| 109 | |||
| 110 | /** @} */ | ||
| 111 | |||
| 112 | /** | ||
| 113 | * \addtogroup uipconffunc | ||
| 114 | * @{ | ||
| 115 | */ | ||
| 116 | |||
| 117 | |||
| 118 | /** | ||
| 119 | * Specifiy the Ethernet MAC address. | ||
| 120 | * | ||
| 121 | * The ARP code needs to know the MAC address of the Ethernet card in | ||
| 122 | * order to be able to respond to ARP queries and to generate working | ||
| 123 | * Ethernet headers. | ||
| 124 | * | ||
| 125 | * \note This macro only specifies the Ethernet MAC address to the ARP | ||
| 126 | * code. It cannot be used to change the MAC address of the Ethernet | ||
| 127 | * card. | ||
| 128 | * | ||
| 129 | * \param eaddr A pointer to a struct uip_eth_addr containing the | ||
| 130 | * Ethernet MAC address of the Ethernet card. | ||
| 131 | * | ||
| 132 | * \hideinitializer | ||
| 133 | */ | ||
| 134 | #define uip_setethaddr(eaddr) do {uip_ethaddr.addr[0] = eaddr.addr[0]; \ | ||
| 135 | uip_ethaddr.addr[1] = eaddr.addr[1];\ | ||
| 136 | uip_ethaddr.addr[2] = eaddr.addr[2];\ | ||
| 137 | uip_ethaddr.addr[3] = eaddr.addr[3];\ | ||
| 138 | uip_ethaddr.addr[4] = eaddr.addr[4];\ | ||
| 139 | uip_ethaddr.addr[5] = eaddr.addr[5];} while(0) | ||
| 140 | |||
| 141 | /** @} */ | ||
| 142 | |||
| 143 | |||
| 144 | #endif /* __UIP_ARP_H__ */ | ||
| 145 | /** @} */ | ||
| 146 | |||
diff --git a/lib/lufa/Projects/Webserver/Lib/uip/uipopt.h b/lib/lufa/Projects/Webserver/Lib/uip/uipopt.h deleted file mode 100644 index 520c03f25..000000000 --- a/lib/lufa/Projects/Webserver/Lib/uip/uipopt.h +++ /dev/null | |||
| @@ -1,740 +0,0 @@ | |||
| 1 | /** | ||
| 2 | * \addtogroup uip | ||
| 3 | * @{ | ||
| 4 | */ | ||
| 5 | |||
| 6 | /** | ||
| 7 | * \defgroup uipopt Configuration options for uIP | ||
| 8 | * @{ | ||
| 9 | * | ||
| 10 | * uIP is configured using the per-project configuration file | ||
| 11 | * "uipopt.h". This file contains all compile-time options for uIP and | ||
| 12 | * should be tweaked to match each specific project. The uIP | ||
| 13 | * distribution contains a documented example "uipopt.h" that can be | ||
| 14 | * copied and modified for each project. | ||
| 15 | */ | ||
| 16 | |||
| 17 | /** | ||
| 18 | * \file | ||
| 19 | * Configuration options for uIP. | ||
| 20 | * \author Adam Dunkels <adam@dunkels.com> | ||
| 21 | * | ||
| 22 | * This file is used for tweaking various configuration options for | ||
| 23 | * uIP. You should make a copy of this file into one of your project's | ||
| 24 | * directories instead of editing this example "uipopt.h" file that | ||
| 25 | * comes with the uIP distribution. | ||
| 26 | */ | ||
| 27 | |||
| 28 | /* | ||
| 29 | * Copyright (c) 2001-2003, Adam Dunkels. | ||
| 30 | * All rights reserved. | ||
| 31 | * | ||
| 32 | * Redistribution and use in source and binary forms, with or without | ||
| 33 | * modification, are permitted provided that the following conditions | ||
| 34 | * are met: | ||
| 35 | * 1. Redistributions of source code must retain the above copyright | ||
| 36 | * notice, this list of conditions and the following disclaimer. | ||
| 37 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 38 | * notice, this list of conditions and the following disclaimer in the | ||
| 39 | * documentation and/or other materials provided with the distribution. | ||
| 40 | * 3. The name of the author may not be used to endorse or promote | ||
| 41 | * products derived from this software without specific prior | ||
| 42 | * written permission. | ||
| 43 | * | ||
| 44 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS | ||
| 45 | * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | ||
| 46 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 47 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | ||
| 48 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 49 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE | ||
| 50 | * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | ||
| 51 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | ||
| 52 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | ||
| 53 | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | ||
| 54 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
| 55 | * | ||
| 56 | * This file is part of the uIP TCP/IP stack. | ||
| 57 | * | ||
| 58 | * $Id: uipopt.h,v 1.11 2009/04/10 00:37:48 adamdunkels Exp $ | ||
| 59 | * | ||
| 60 | */ | ||
| 61 | |||
| 62 | #ifndef __UIPOPT_H__ | ||
| 63 | #define __UIPOPT_H__ | ||
| 64 | |||
| 65 | #include "Config/AppConfig.h" | ||
| 66 | |||
| 67 | #ifndef UIP_LITTLE_ENDIAN | ||
| 68 | #define UIP_LITTLE_ENDIAN 3412 | ||
| 69 | #endif /* UIP_LITTLE_ENDIAN */ | ||
| 70 | #ifndef UIP_BIG_ENDIAN | ||
| 71 | #define UIP_BIG_ENDIAN 1234 | ||
| 72 | #endif /* UIP_BIG_ENDIAN */ | ||
| 73 | |||
| 74 | /*------------------------------------------------------------------------------*/ | ||
| 75 | |||
| 76 | /** | ||
| 77 | * \defgroup uipoptstaticconf Static configuration options | ||
| 78 | * @{ | ||
| 79 | * | ||
| 80 | * These configuration options can be used for setting the IP address | ||
| 81 | * settings statically, but only if UIP_FIXEDADDR is set to 1. The | ||
| 82 | * configuration options for a specific node includes IP address, | ||
| 83 | * netmask and default router as well as the Ethernet address. The | ||
| 84 | * netmask, default router and Ethernet address are applicable only | ||
| 85 | * if uIP should be run over Ethernet. | ||
| 86 | * | ||
| 87 | * This options are meaningful only for the IPv4 code. | ||
| 88 | * | ||
| 89 | * All of these should be changed to suit your project. | ||
| 90 | */ | ||
| 91 | |||
| 92 | /** | ||
| 93 | * Determines if uIP should use a fixed IP address or not. | ||
| 94 | * | ||
| 95 | * If uIP should use a fixed IP address, the settings are set in the | ||
| 96 | * uipopt.h file. If not, the macros uip_sethostaddr(), | ||
| 97 | * uip_setdraddr() and uip_setnetmask() should be used instead. | ||
| 98 | * | ||
| 99 | * \hideinitializer | ||
| 100 | */ | ||
| 101 | #define UIP_FIXEDADDR 0 | ||
| 102 | |||
| 103 | /** | ||
| 104 | * Ping IP address assignment. | ||
| 105 | * | ||
| 106 | * uIP uses a "ping" packets for setting its own IP address if this | ||
| 107 | * option is set. If so, uIP will start with an empty IP address and | ||
| 108 | * the destination IP address of the first incoming "ping" (ICMP echo) | ||
| 109 | * packet will be used for setting the hosts IP address. | ||
| 110 | * | ||
| 111 | * \note This works only if UIP_FIXEDADDR is 0. | ||
| 112 | * | ||
| 113 | * \hideinitializer | ||
| 114 | */ | ||
| 115 | #ifdef UIP_CONF_PINGADDRCONF | ||
| 116 | #define UIP_PINGADDRCONF UIP_CONF_PINGADDRCONF | ||
| 117 | #else /* UIP_CONF_PINGADDRCONF */ | ||
| 118 | #define UIP_PINGADDRCONF 0 | ||
| 119 | #endif /* UIP_CONF_PINGADDRCONF */ | ||
| 120 | |||
| 121 | |||
| 122 | /** | ||
| 123 | * Specifies if the uIP ARP module should be compiled with a fixed | ||
| 124 | * Ethernet MAC address or not. | ||
| 125 | * | ||
| 126 | * If this configuration option is 0, the macro uip_setethaddr() can | ||
| 127 | * be used to specify the Ethernet address at run-time. | ||
| 128 | * | ||
| 129 | * \hideinitializer | ||
| 130 | */ | ||
| 131 | #define UIP_FIXEDETHADDR 0 | ||
| 132 | |||
| 133 | /** @} */ | ||
| 134 | /*------------------------------------------------------------------------------*/ | ||
| 135 | /** | ||
| 136 | * \defgroup uipoptip IP configuration options | ||
| 137 | * @{ | ||
| 138 | * | ||
| 139 | */ | ||
| 140 | /** | ||
| 141 | * The IP TTL (time to live) of IP packets sent by uIP. | ||
| 142 | * | ||
| 143 | * This should normally not be changed. | ||
| 144 | */ | ||
| 145 | #define UIP_TTL 64 | ||
| 146 | |||
| 147 | /** | ||
| 148 | * The maximum time an IP fragment should wait in the reassembly | ||
| 149 | * buffer before it is dropped. | ||
| 150 | * | ||
| 151 | */ | ||
| 152 | #define UIP_REASS_MAXAGE 60 /*60s*/ | ||
| 153 | |||
| 154 | /** | ||
| 155 | * Turn on support for IP packet reassembly. | ||
| 156 | * | ||
| 157 | * uIP supports reassembly of fragmented IP packets. This features | ||
| 158 | * requires an additional amount of RAM to hold the reassembly buffer | ||
| 159 | * and the reassembly code size is approximately 700 bytes. The | ||
| 160 | * reassembly buffer is of the same size as the uip_buf buffer | ||
| 161 | * (configured by UIP_BUFSIZE). | ||
| 162 | * | ||
| 163 | * \note IP packet reassembly is not heavily tested. | ||
| 164 | * | ||
| 165 | * \hideinitializer | ||
| 166 | */ | ||
| 167 | #ifdef UIP_CONF_REASSEMBLY | ||
| 168 | #define UIP_REASSEMBLY UIP_CONF_REASSEMBLY | ||
| 169 | #else /* UIP_CONF_REASSEMBLY */ | ||
| 170 | #define UIP_REASSEMBLY 0 | ||
| 171 | #endif /* UIP_CONF_REASSEMBLY */ | ||
| 172 | /** @} */ | ||
| 173 | |||
| 174 | /*------------------------------------------------------------------------------*/ | ||
| 175 | /** | ||
| 176 | * \defgroup uipoptipv6 IPv6 configuration options | ||
| 177 | * @{ | ||
| 178 | * | ||
| 179 | */ | ||
| 180 | |||
| 181 | /** The maximum transmission unit at the IP Layer*/ | ||
| 182 | #define UIP_LINK_MTU 1280 | ||
| 183 | |||
| 184 | #ifndef UIP_CONF_IPV6 | ||
| 185 | /** Do we use IPv6 or not (default: no) */ | ||
| 186 | #define UIP_CONF_IPV6 0 | ||
| 187 | #endif | ||
| 188 | |||
| 189 | #ifndef UIP_CONF_IPV6_QUEUE_PKT | ||
| 190 | /** Do we do per %neighbor queuing during address resolution (default: no) */ | ||
| 191 | #define UIP_CONF_IPV6_QUEUE_PKT 0 | ||
| 192 | #endif | ||
| 193 | |||
| 194 | #ifndef UIP_CONF_IPV6_CHECKS | ||
| 195 | /** Do we do IPv6 consistency checks (highly recommended, default: yes) */ | ||
| 196 | #define UIP_CONF_IPV6_CHECKS 1 | ||
| 197 | #endif | ||
| 198 | |||
| 199 | #ifndef UIP_CONF_IPV6_REASSEMBLY | ||
| 200 | /** Do we do IPv6 fragmentation (default: no) */ | ||
| 201 | #define UIP_CONF_IPV6_REASSEMBLY 0 | ||
| 202 | #endif | ||
| 203 | |||
| 204 | #ifndef UIP_CONF_NETIF_MAX_ADDRESSES | ||
| 205 | /** Default number of IPv6 addresses associated to the node's interface */ | ||
| 206 | #define UIP_CONF_NETIF_MAX_ADDRESSES 3 | ||
| 207 | #endif | ||
| 208 | |||
| 209 | #ifndef UIP_CONF_ND6_MAX_PREFIXES | ||
| 210 | /** Default number of IPv6 prefixes associated to the node's interface */ | ||
| 211 | #define UIP_CONF_ND6_MAX_PREFIXES 3 | ||
| 212 | #endif | ||
| 213 | |||
| 214 | #ifndef UIP_CONF_ND6_MAX_NEIGHBORS | ||
| 215 | /** Default number of neighbors that can be stored in the %neighbor cache */ | ||
| 216 | #define UIP_CONF_ND6_MAX_NEIGHBORS 4 | ||
| 217 | #endif | ||
| 218 | |||
| 219 | #ifndef UIP_CONF_ND6_MAX_DEFROUTERS | ||
| 220 | /** Minimum number of default routers */ | ||
| 221 | #define UIP_CONF_ND6_MAX_DEFROUTERS 2 | ||
| 222 | #endif | ||
| 223 | /** @} */ | ||
| 224 | |||
| 225 | /*------------------------------------------------------------------------------*/ | ||
| 226 | /** | ||
| 227 | * \defgroup uipoptudp UDP configuration options | ||
| 228 | * @{ | ||
| 229 | * | ||
| 230 | * \note The UDP support in uIP is still not entirely complete; there | ||
| 231 | * is no support for sending or receiving broadcast or multicast | ||
| 232 | * packets, but it works well enough to support a number of vital | ||
| 233 | * applications such as DNS queries, though | ||
| 234 | */ | ||
| 235 | |||
| 236 | /** | ||
| 237 | * Toggles whether UDP support should be compiled in or not. | ||
| 238 | * | ||
| 239 | * \hideinitializer | ||
| 240 | */ | ||
| 241 | #ifdef UIP_CONF_UDP | ||
| 242 | #define UIP_UDP UIP_CONF_UDP | ||
| 243 | #else /* UIP_CONF_UDP */ | ||
| 244 | #define UIP_UDP 1 | ||
| 245 | #endif /* UIP_CONF_UDP */ | ||
| 246 | |||
| 247 | /** | ||
| 248 | * Toggles if UDP checksums should be used or not. | ||
| 249 | * | ||
| 250 | * \note Support for UDP checksums is currently not included in uIP, | ||
| 251 | * so this option has no function. | ||
| 252 | * | ||
| 253 | * \hideinitializer | ||
| 254 | */ | ||
| 255 | #ifdef UIP_CONF_UDP_CHECKSUMS | ||
| 256 | #define UIP_UDP_CHECKSUMS UIP_CONF_UDP_CHECKSUMS | ||
| 257 | #else | ||
| 258 | #define UIP_UDP_CHECKSUMS 0 | ||
| 259 | #endif | ||
| 260 | |||
| 261 | /** | ||
| 262 | * The maximum amount of concurrent UDP connections. | ||
| 263 | * | ||
| 264 | * \hideinitializer | ||
| 265 | */ | ||
| 266 | #ifdef UIP_CONF_UDP_CONNS | ||
| 267 | #define UIP_UDP_CONNS UIP_CONF_UDP_CONNS | ||
| 268 | #else /* UIP_CONF_UDP_CONNS */ | ||
| 269 | #define UIP_UDP_CONNS 10 | ||
| 270 | #endif /* UIP_CONF_UDP_CONNS */ | ||
| 271 | |||
| 272 | /** | ||
| 273 | * The name of the function that should be called when UDP datagrams arrive. | ||
| 274 | * | ||
| 275 | * \hideinitializer | ||
| 276 | */ | ||
| 277 | |||
| 278 | |||
| 279 | /** @} */ | ||
| 280 | /*------------------------------------------------------------------------------*/ | ||
| 281 | /** | ||
| 282 | * \defgroup uipopttcp TCP configuration options | ||
| 283 | * @{ | ||
| 284 | */ | ||
| 285 | |||
| 286 | /** | ||
| 287 | * Toggles whether TCP support should be compiled in or not. | ||
| 288 | * | ||
| 289 | * \hideinitializer | ||
| 290 | */ | ||
| 291 | #ifdef UIP_CONF_TCP | ||
| 292 | #define UIP_TCP UIP_CONF_TCP | ||
| 293 | #else /* UIP_CONF_TCP */ | ||
| 294 | #define UIP_TCP 1 | ||
| 295 | #endif /* UIP_CONF_TCP */ | ||
| 296 | |||
| 297 | /** | ||
| 298 | * Determines if support for opening connections from uIP should be | ||
| 299 | * compiled in. | ||
| 300 | * | ||
| 301 | * If the applications that are running on top of uIP for this project | ||
| 302 | * do not need to open outgoing TCP connections, this configuration | ||
| 303 | * option can be turned off to reduce the code size of uIP. | ||
| 304 | * | ||
| 305 | * \hideinitializer | ||
| 306 | */ | ||
| 307 | #ifndef UIP_CONF_ACTIVE_OPEN | ||
| 308 | #define UIP_ACTIVE_OPEN 1 | ||
| 309 | #else /* UIP_CONF_ACTIVE_OPEN */ | ||
| 310 | #define UIP_ACTIVE_OPEN UIP_CONF_ACTIVE_OPEN | ||
| 311 | #endif /* UIP_CONF_ACTIVE_OPEN */ | ||
| 312 | |||
| 313 | /** | ||
| 314 | * The maximum number of simultaneously open TCP connections. | ||
| 315 | * | ||
| 316 | * Since the TCP connections are statically allocated, turning this | ||
| 317 | * configuration knob down results in less RAM used. Each TCP | ||
| 318 | * connection requires approximately 30 bytes of memory. | ||
| 319 | * | ||
| 320 | * \hideinitializer | ||
| 321 | */ | ||
| 322 | #ifndef UIP_CONF_MAX_CONNECTIONS | ||
| 323 | #define UIP_CONNS 10 | ||
| 324 | #else /* UIP_CONF_MAX_CONNECTIONS */ | ||
| 325 | #define UIP_CONNS UIP_CONF_MAX_CONNECTIONS | ||
| 326 | #endif /* UIP_CONF_MAX_CONNECTIONS */ | ||
| 327 | |||
| 328 | |||
| 329 | /** | ||
| 330 | * The maximum number of simultaneously listening TCP ports. | ||
| 331 | * | ||
| 332 | * Each listening TCP port requires 2 bytes of memory. | ||
| 333 | * | ||
| 334 | * \hideinitializer | ||
| 335 | */ | ||
| 336 | #ifndef UIP_CONF_MAX_LISTENPORTS | ||
| 337 | #define UIP_LISTENPORTS 20 | ||
| 338 | #else /* UIP_CONF_MAX_LISTENPORTS */ | ||
| 339 | #define UIP_LISTENPORTS UIP_CONF_MAX_LISTENPORTS | ||
| 340 | #endif /* UIP_CONF_MAX_LISTENPORTS */ | ||
| 341 | |||
| 342 | /** | ||
| 343 | * Determines if support for TCP urgent data notification should be | ||
| 344 | * compiled in. | ||
| 345 | * | ||
| 346 | * Urgent data (out-of-band data) is a rarely used TCP feature that | ||
| 347 | * very seldom would be required. | ||
| 348 | * | ||
| 349 | * \hideinitializer | ||
| 350 | */ | ||
| 351 | #if !defined(UIP_URGDATA) | ||
| 352 | #define UIP_URGDATA 0 | ||
| 353 | #endif | ||
| 354 | |||
| 355 | /** | ||
| 356 | * The initial retransmission timeout counted in timer pulses. | ||
| 357 | * | ||
| 358 | * This should not be changed. | ||
| 359 | */ | ||
| 360 | #if !defined(UIP_RTO) | ||
| 361 | #define UIP_RTO 3 | ||
| 362 | #endif | ||
| 363 | |||
| 364 | /** | ||
| 365 | * The maximum number of times a segment should be retransmitted | ||
| 366 | * before the connection should be aborted. | ||
| 367 | * | ||
| 368 | * This should not be changed. | ||
| 369 | */ | ||
| 370 | #if !defined(UIP_MAXRTX) | ||
| 371 | #define UIP_MAXRTX 8 | ||
| 372 | #endif | ||
| 373 | |||
| 374 | /** | ||
| 375 | * The maximum number of times a SYN segment should be retransmitted | ||
| 376 | * before a connection request should be deemed to have been | ||
| 377 | * unsuccessful. | ||
| 378 | * | ||
| 379 | * This should not need to be changed. | ||
| 380 | */ | ||
| 381 | #if !defined(UIP_MAXSYNRTX) | ||
| 382 | #define UIP_MAXSYNRTX 5 | ||
| 383 | #endif | ||
| 384 | |||
| 385 | /** | ||
| 386 | * The TCP maximum segment size. | ||
| 387 | * | ||
| 388 | * This is should not be to set to more than | ||
| 389 | * UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN. | ||
| 390 | */ | ||
| 391 | #ifdef UIP_CONF_TCP_MSS | ||
| 392 | #define UIP_TCP_MSS UIP_CONF_TCP_MSS | ||
| 393 | #else | ||
| 394 | #define UIP_TCP_MSS (UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN) | ||
| 395 | #endif | ||
| 396 | |||
| 397 | /** | ||
| 398 | * The size of the advertised receiver's window. | ||
| 399 | * | ||
| 400 | * Should be set low (i.e., to the size of the uip_buf buffer) if the | ||
| 401 | * application is slow to process incoming data, or high (32768 bytes) | ||
| 402 | * if the application processes data quickly. | ||
| 403 | * | ||
| 404 | * \hideinitializer | ||
| 405 | */ | ||
| 406 | #ifndef UIP_CONF_RECEIVE_WINDOW | ||
| 407 | #define UIP_RECEIVE_WINDOW UIP_TCP_MSS | ||
| 408 | #else | ||
| 409 | #define UIP_RECEIVE_WINDOW UIP_CONF_RECEIVE_WINDOW | ||
| 410 | #endif | ||
| 411 | |||
| 412 | /** | ||
| 413 | * How long a connection should stay in the TIME_WAIT state. | ||
| 414 | * | ||
| 415 | * This configuration option has no real implication, and it should be | ||
| 416 | * left untouched. | ||
| 417 | */ | ||
| 418 | #define UIP_TIME_WAIT_TIMEOUT 120 | ||
| 419 | |||
| 420 | |||
| 421 | /** @} */ | ||
| 422 | /*------------------------------------------------------------------------------*/ | ||
| 423 | /** | ||
| 424 | * \defgroup uipoptarp ARP configuration options | ||
| 425 | * @{ | ||
| 426 | */ | ||
| 427 | |||
| 428 | /** | ||
| 429 | * The size of the ARP table. | ||
| 430 | * | ||
| 431 | * This option should be set to a larger value if this uIP node will | ||
| 432 | * have many connections from the local network. | ||
| 433 | * | ||
| 434 | * \hideinitializer | ||
| 435 | */ | ||
| 436 | #ifdef UIP_CONF_ARPTAB_SIZE | ||
| 437 | #define UIP_ARPTAB_SIZE UIP_CONF_ARPTAB_SIZE | ||
| 438 | #else | ||
| 439 | #define UIP_ARPTAB_SIZE 8 | ||
| 440 | #endif | ||
| 441 | |||
| 442 | /** | ||
| 443 | * The maximum age of ARP table entries measured in 10ths of seconds. | ||
| 444 | * | ||
| 445 | * An UIP_ARP_MAXAGE of 120 corresponds to 20 minutes (BSD | ||
| 446 | * default). | ||
| 447 | */ | ||
| 448 | #define UIP_ARP_MAXAGE 120 | ||
| 449 | |||
| 450 | |||
| 451 | /** @} */ | ||
| 452 | |||
| 453 | /*------------------------------------------------------------------------------*/ | ||
| 454 | |||
| 455 | /** | ||
| 456 | * \defgroup uipoptmac layer 2 options (for ipv6) | ||
| 457 | * @{ | ||
| 458 | */ | ||
| 459 | |||
| 460 | #define UIP_DEFAULT_PREFIX_LEN 64 | ||
| 461 | |||
| 462 | /** @} */ | ||
| 463 | |||
| 464 | /*------------------------------------------------------------------------------*/ | ||
| 465 | |||
| 466 | /** | ||
| 467 | * \defgroup uipoptsics 6lowpan options (for ipv6) | ||
| 468 | * @{ | ||
| 469 | */ | ||
| 470 | /** | ||
| 471 | * Timeout for packet reassembly at the 6lowpan layer | ||
| 472 | * (should be < 60s) | ||
| 473 | */ | ||
| 474 | #ifdef SICSLOWPAN_CONF_MAXAGE | ||
| 475 | #define SICSLOWPAN_REASS_MAXAGE SICSLOWPAN_CONF_MAXAGE | ||
| 476 | #else | ||
| 477 | #define SICSLOWPAN_REASS_MAXAGE 20 | ||
| 478 | #endif | ||
| 479 | |||
| 480 | /** | ||
| 481 | * Do we compress the IP header or not (default: no) | ||
| 482 | */ | ||
| 483 | #ifndef SICSLOWPAN_CONF_COMPRESSION | ||
| 484 | #define SICSLOWPAN_CONF_COMPRESSION 0 | ||
| 485 | #endif | ||
| 486 | |||
| 487 | /** | ||
| 488 | * If we use IPHC compression, how many address contexts do we support | ||
| 489 | */ | ||
| 490 | #ifndef SICSLOWPAN_CONF_MAX_ADDR_CONTEXTS | ||
| 491 | #define SICSLOWPAN_CONF_MAX_ADDR_CONTEXTS 1 | ||
| 492 | #endif | ||
| 493 | |||
| 494 | /** | ||
| 495 | * Do we support 6lowpan fragmentation | ||
| 496 | */ | ||
| 497 | #ifndef SICSLOWPAN_CONF_FRAG | ||
| 498 | #define SICSLOWPAN_CONF_FRAG 0 | ||
| 499 | #endif | ||
| 500 | |||
| 501 | /** @} */ | ||
| 502 | |||
| 503 | /*------------------------------------------------------------------------------*/ | ||
| 504 | |||
| 505 | /** | ||
| 506 | * \defgroup uipoptgeneral General configuration options | ||
| 507 | * @{ | ||
| 508 | */ | ||
| 509 | |||
| 510 | /** | ||
| 511 | * The size of the uIP packet buffer. | ||
| 512 | * | ||
| 513 | * The uIP packet buffer should not be smaller than 60 bytes, and does | ||
| 514 | * not need to be larger than 1514 bytes. Lower size results in lower | ||
| 515 | * TCP throughput, larger size results in higher TCP throughput. | ||
| 516 | * | ||
| 517 | * \hideinitializer | ||
| 518 | */ | ||
| 519 | #ifndef UIP_CONF_BUFFER_SIZE | ||
| 520 | #define UIP_BUFSIZE UIP_LINK_MTU + UIP_LLH_LEN | ||
| 521 | #else /* UIP_CONF_BUFFER_SIZE */ | ||
| 522 | #define UIP_BUFSIZE UIP_CONF_BUFFER_SIZE | ||
| 523 | #endif /* UIP_CONF_BUFFER_SIZE */ | ||
| 524 | |||
| 525 | |||
| 526 | /** | ||
| 527 | * Determines if statistics support should be compiled in. | ||
| 528 | * | ||
| 529 | * The statistics is useful for debugging and to show the user. | ||
| 530 | * | ||
| 531 | * \hideinitializer | ||
| 532 | */ | ||
| 533 | #ifndef UIP_CONF_STATISTICS | ||
| 534 | #define UIP_STATISTICS 0 | ||
| 535 | #else /* UIP_CONF_STATISTICS */ | ||
| 536 | #define UIP_STATISTICS UIP_CONF_STATISTICS | ||
| 537 | #endif /* UIP_CONF_STATISTICS */ | ||
| 538 | |||
| 539 | /** | ||
| 540 | * Determines if logging of certain events should be compiled in. | ||
| 541 | * | ||
| 542 | * This is useful mostly for debugging. The function uip_log() | ||
| 543 | * must be implemented to suit the architecture of the project, if | ||
| 544 | * logging is turned on. | ||
| 545 | * | ||
| 546 | * \hideinitializer | ||
| 547 | */ | ||
| 548 | #ifndef UIP_CONF_LOGGING | ||
| 549 | #define UIP_LOGGING 0 | ||
| 550 | #else /* UIP_CONF_LOGGING */ | ||
| 551 | #define UIP_LOGGING UIP_CONF_LOGGING | ||
| 552 | #endif /* UIP_CONF_LOGGING */ | ||
| 553 | |||
| 554 | /** | ||
| 555 | * Broadcast support. | ||
| 556 | * | ||
| 557 | * This flag configures IP broadcast support. This is useful only | ||
| 558 | * together with UDP. | ||
| 559 | * | ||
| 560 | * \hideinitializer | ||
| 561 | * | ||
| 562 | */ | ||
| 563 | #ifndef UIP_CONF_BROADCAST | ||
| 564 | #define UIP_BROADCAST 0 | ||
| 565 | #else /* UIP_CONF_BROADCAST */ | ||
| 566 | #define UIP_BROADCAST UIP_CONF_BROADCAST | ||
| 567 | #endif /* UIP_CONF_BROADCAST */ | ||
| 568 | |||
| 569 | /** | ||
| 570 | * Print out a uIP log message. | ||
| 571 | * | ||
| 572 | * This function must be implemented by the module that uses uIP, and | ||
| 573 | * is called by uIP whenever a log message is generated. | ||
| 574 | */ | ||
| 575 | void uip_log(char *msg); | ||
| 576 | |||
| 577 | /** | ||
| 578 | * The link level header length. | ||
| 579 | * | ||
| 580 | * This is the offset into the uip_buf where the IP header can be | ||
| 581 | * found. For Ethernet, this should be set to 14. For SLIP, this | ||
| 582 | * should be set to 0. | ||
| 583 | * | ||
| 584 | * \note we probably won't use this constant for other link layers than | ||
| 585 | * ethernet as they have variable header length (this is due to variable | ||
| 586 | * number and type of address fields and to optional security features) | ||
| 587 | * E.g.: 802.15.4 -> 2 + (1/2*4/8) + 0/5/6/10/14 | ||
| 588 | * 802.11 -> 4 + (6*3/4) + 2 | ||
| 589 | * \hideinitializer | ||
| 590 | */ | ||
| 591 | #ifdef UIP_CONF_LLH_LEN | ||
| 592 | #define UIP_LLH_LEN UIP_CONF_LLH_LEN | ||
| 593 | #else /* UIP_LLH_LEN */ | ||
| 594 | #define UIP_LLH_LEN 14 | ||
| 595 | #endif /* UIP_CONF_LLH_LEN */ | ||
| 596 | |||
| 597 | /** @} */ | ||
| 598 | /*------------------------------------------------------------------------------*/ | ||
| 599 | /** | ||
| 600 | * \defgroup uipoptcpu CPU architecture configuration | ||
| 601 | * @{ | ||
| 602 | * | ||
| 603 | * The CPU architecture configuration is where the endianess of the | ||
| 604 | * CPU on which uIP is to be run is specified. Most CPUs today are | ||
| 605 | * little endian, and the most notable exception are the Motorolas | ||
| 606 | * which are big endian. The BYTE_ORDER macro should be changed to | ||
| 607 | * reflect the CPU architecture on which uIP is to be run. | ||
| 608 | */ | ||
| 609 | |||
| 610 | /** | ||
| 611 | * The byte order of the CPU architecture on which uIP is to be run. | ||
| 612 | * | ||
| 613 | * This option can be either UIP_BIG_ENDIAN (Motorola byte order) or | ||
| 614 | * UIP_LITTLE_ENDIAN (Intel byte order). | ||
| 615 | * | ||
| 616 | * \hideinitializer | ||
| 617 | */ | ||
| 618 | #ifdef UIP_CONF_BYTE_ORDER | ||
| 619 | #define UIP_BYTE_ORDER UIP_CONF_BYTE_ORDER | ||
| 620 | #else /* UIP_CONF_BYTE_ORDER */ | ||
| 621 | #define UIP_BYTE_ORDER UIP_LITTLE_ENDIAN | ||
| 622 | #endif /* UIP_CONF_BYTE_ORDER */ | ||
| 623 | |||
| 624 | /** @} */ | ||
| 625 | /*------------------------------------------------------------------------------*/ | ||
| 626 | |||
| 627 | #include <ff.h> | ||
| 628 | #include <stdbool.h> | ||
| 629 | #include <stdint.h> | ||
| 630 | |||
| 631 | #include "timer.h" | ||
| 632 | |||
| 633 | typedef uint8_t u8_t; | ||
| 634 | typedef uint16_t u16_t; | ||
| 635 | typedef uint32_t u32_t; | ||
| 636 | typedef uint32_t uip_stats_t; | ||
| 637 | |||
| 638 | /** | ||
| 639 | * \defgroup uipoptapp Application specific configurations | ||
| 640 | * @{ | ||
| 641 | * | ||
| 642 | * An uIP application is implemented using a single application | ||
| 643 | * function that is called by uIP whenever a TCP/IP event occurs. The | ||
| 644 | * name of this function must be registered with uIP at compile time | ||
| 645 | * using the UIP_APPCALL definition. | ||
| 646 | * | ||
| 647 | * uIP applications can store the application state within the | ||
| 648 | * uip_conn structure by specifying the type of the application | ||
| 649 | * structure by typedef:ing the type uip_tcp_appstate_t and uip_udp_appstate_t. | ||
| 650 | * | ||
| 651 | * The file containing the definitions must be included in the | ||
| 652 | * uipopt.h file. | ||
| 653 | * | ||
| 654 | * The following example illustrates how this can look. | ||
| 655 | \code | ||
| 656 | |||
| 657 | void httpd_appcall(void); | ||
| 658 | #define UIP_APPCALL httpd_appcall | ||
| 659 | |||
| 660 | struct httpd_state { | ||
| 661 | u8_t state; | ||
| 662 | u16_t count; | ||
| 663 | char *dataptr; | ||
| 664 | char *script; | ||
| 665 | }; | ||
| 666 | typedef struct httpd_state uip_tcp_appstate_t | ||
| 667 | \endcode | ||
| 668 | */ | ||
| 669 | #define UIP_UDP_APPCALL uIPManagement_UDPCallback | ||
| 670 | void UIP_UDP_APPCALL(void); | ||
| 671 | |||
| 672 | /** | ||
| 673 | * \var #define UIP_APPCALL | ||
| 674 | * | ||
| 675 | * The name of the application function that uIP should call in | ||
| 676 | * response to TCP/IP events. | ||
| 677 | * | ||
| 678 | */ | ||
| 679 | #define UIP_APPCALL uIPManagement_TCPCallback | ||
| 680 | void UIP_APPCALL(void); | ||
| 681 | |||
| 682 | /** | ||
| 683 | * \var typedef uip_tcp_appstate_t | ||
| 684 | * | ||
| 685 | * The type of the application state that is to be stored in the | ||
| 686 | * uip_conn structure. This usually is typedef:ed to a struct holding | ||
| 687 | * application state information. | ||
| 688 | */ | ||
| 689 | typedef union | ||
| 690 | { | ||
| 691 | struct | ||
| 692 | { | ||
| 693 | uint8_t CurrentState; | ||
| 694 | uint8_t NextState; | ||
| 695 | |||
| 696 | char FileName[MAX_URI_LENGTH]; | ||
| 697 | FIL FileHandle; | ||
| 698 | bool FileOpen; | ||
| 699 | uint32_t ACKedFilePos; | ||
| 700 | uint16_t SentChunkSize; | ||
| 701 | } HTTPServer; | ||
| 702 | |||
| 703 | struct | ||
| 704 | { | ||
| 705 | uint8_t CurrentState; | ||
| 706 | uint8_t NextState; | ||
| 707 | |||
| 708 | uint8_t IssuedCommand; | ||
| 709 | } TELNETServer; | ||
| 710 | } uip_tcp_appstate_t; | ||
| 711 | |||
| 712 | /** | ||
| 713 | * \var typedef uip_udp_appstate_t | ||
| 714 | * | ||
| 715 | * The type of the application state that is to be stored in the | ||
| 716 | * uip_conn structure. This usually is typedef:ed to a struct holding | ||
| 717 | * application state information. | ||
| 718 | */ | ||
| 719 | typedef union | ||
| 720 | { | ||
| 721 | struct | ||
| 722 | { | ||
| 723 | uint8_t CurrentState; | ||
| 724 | struct timer Timeout; | ||
| 725 | |||
| 726 | struct | ||
| 727 | { | ||
| 728 | uint8_t AllocatedIP[4]; | ||
| 729 | uint8_t Netmask[4]; | ||
| 730 | uint8_t GatewayIP[4]; | ||
| 731 | uint8_t ServerIP[4]; | ||
| 732 | } DHCPOffer_Data; | ||
| 733 | } DHCPClient; | ||
| 734 | } uip_udp_appstate_t; | ||
| 735 | /** @} */ | ||
| 736 | |||
| 737 | #endif /* __UIPOPT_H__ */ | ||
| 738 | /** @} */ | ||
| 739 | /** @} */ | ||
| 740 | |||
