aboutsummaryrefslogtreecommitdiff
path: root/platforms/chibios
diff options
context:
space:
mode:
authorDrashna Jaelre <drashna@live.com>2021-10-05 18:01:45 -0700
committerGitHub <noreply@github.com>2021-10-06 12:01:45 +1100
commitba8f1454f46537609f65a6abb4bb0e82fecbc2f1 (patch)
tree62560891f23ca176360fbd25e20bd949cceba469 /platforms/chibios
parent9f0e74802a9fef5bad5052ef0f54fa2ab533f578 (diff)
downloadqmk_firmware-ba8f1454f46537609f65a6abb4bb0e82fecbc2f1.tar.gz
qmk_firmware-ba8f1454f46537609f65a6abb4bb0e82fecbc2f1.zip
Move Audio drivers from quantum to platform drivers folder (#14308)
* Move Audio drivers from quantum to platform drivers folder * fix path for audio drivers Co-authored-by: Ryan <fauxpark@gmail.com> Co-authored-by: Ryan <fauxpark@gmail.com>
Diffstat (limited to 'platforms/chibios')
-rw-r--r--platforms/chibios/drivers/audio_dac.h126
-rw-r--r--platforms/chibios/drivers/audio_dac_additive.c335
-rw-r--r--platforms/chibios/drivers/audio_dac_basic.c245
-rw-r--r--platforms/chibios/drivers/audio_pwm.h40
-rw-r--r--platforms/chibios/drivers/audio_pwm_hardware.c144
-rw-r--r--platforms/chibios/drivers/audio_pwm_software.c164
6 files changed, 1054 insertions, 0 deletions
diff --git a/platforms/chibios/drivers/audio_dac.h b/platforms/chibios/drivers/audio_dac.h
new file mode 100644
index 000000000..07cd622ea
--- /dev/null
+++ b/platforms/chibios/drivers/audio_dac.h
@@ -0,0 +1,126 @@
1/* Copyright 2019 Jack Humbert
2 * Copyright 2020 JohSchneider
3 *
4 * This program is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17#pragma once
18
19#ifndef A4
20# define A4 PAL_LINE(GPIOA, 4)
21#endif
22#ifndef A5
23# define A5 PAL_LINE(GPIOA, 5)
24#endif
25
26/**
27 * Size of the dac_buffer arrays. All must be the same size.
28 */
29#define AUDIO_DAC_BUFFER_SIZE 256U
30
31/**
32 * Highest value allowed sample value.
33
34 * since the DAC is limited to 12 bit, the absolute max is 0xfff = 4095U;
35 * lower values adjust the peak-voltage aka volume down.
36 * adjusting this value has only an effect on a sample-buffer whose values are
37 * are NOT pregenerated - see square-wave
38 */
39#ifndef AUDIO_DAC_SAMPLE_MAX
40# define AUDIO_DAC_SAMPLE_MAX 4095U
41#endif
42
43#if !defined(AUDIO_DAC_SAMPLE_RATE) && !defined(AUDIO_MAX_SIMULTANEOUS_TONES) && !defined(AUDIO_DAC_QUALITY_VERY_LOW) && !defined(AUDIO_DAC_QUALITY_LOW) && !defined(AUDIO_DAC_QUALITY_HIGH) && !defined(AUDIO_DAC_QUALITY_VERY_HIGH)
44# define AUDIO_DAC_QUALITY_SANE_MINIMUM
45#endif
46
47/**
48 * These presets allow you to quickly switch between quality settings for
49 * the DAC. The sample rate and maximum number of simultaneous tones roughly
50 * has an inverse relationship - slightly higher sample rates may be possible.
51 *
52 * NOTE: a high sample-rate results in a higher cpu-load, which might lead to
53 * (audible) discontinuities and/or starve other processes of cpu-time
54 * (like RGB-led back-lighting, ...)
55 */
56#ifdef AUDIO_DAC_QUALITY_VERY_LOW
57# define AUDIO_DAC_SAMPLE_RATE 11025U
58# define AUDIO_MAX_SIMULTANEOUS_TONES 8
59#endif
60
61#ifdef AUDIO_DAC_QUALITY_LOW
62# define AUDIO_DAC_SAMPLE_RATE 22050U
63# define AUDIO_MAX_SIMULTANEOUS_TONES 4
64#endif
65
66#ifdef AUDIO_DAC_QUALITY_HIGH
67# define AUDIO_DAC_SAMPLE_RATE 44100U
68# define AUDIO_MAX_SIMULTANEOUS_TONES 2
69#endif
70
71#ifdef AUDIO_DAC_QUALITY_VERY_HIGH
72# define AUDIO_DAC_SAMPLE_RATE 88200U
73# define AUDIO_MAX_SIMULTANEOUS_TONES 1
74#endif
75
76#ifdef AUDIO_DAC_QUALITY_SANE_MINIMUM
77/* a sane-minimum config: with a trade-off between cpu-load and tone-range
78 *
79 * the (currently) highest defined note is NOTE_B8 with 7902Hz; if we now
80 * aim for an even even multiple of the buffer-size, we end up with:
81 * ( roundUptoPow2(highest note / AUDIO_DAC_BUFFER_SIZE) * nyquist-rate * AUDIO_DAC_BUFFER_SIZE)
82 * 7902/256 = 30.867 * 2 * 256 ~= 16384
83 * which works out (but the 'scope shows some sampling artifacts with lower harmonics :-P)
84 */
85# define AUDIO_DAC_SAMPLE_RATE 16384U
86# define AUDIO_MAX_SIMULTANEOUS_TONES 8
87#endif
88
89/**
90 * Effective bit-rate of the DAC. 44.1khz is the standard for most audio - any
91 * lower will sacrifice perceptible audio quality. Any higher will limit the
92 * number of simultaneous tones. In most situations, a tenth (1/10) of the
93 * sample rate is where notes become unbearable.
94 */
95#ifndef AUDIO_DAC_SAMPLE_RATE
96# define AUDIO_DAC_SAMPLE_RATE 44100U
97#endif
98
99/**
100 * The number of tones that can be played simultaneously. If too high a value
101 * is used here, the keyboard will freeze and glitch-out when that many tones
102 * are being played.
103 */
104#ifndef AUDIO_MAX_SIMULTANEOUS_TONES
105# define AUDIO_MAX_SIMULTANEOUS_TONES 2
106#endif
107
108/**
109 * The default value of the DAC when not playing anything. Certain hardware
110 * setups may require a high (AUDIO_DAC_SAMPLE_MAX) or low (0) value here.
111 * Since multiple added sine waves tend to oscillate around the midpoint,
112 * and possibly never/rarely reach either 0 of MAX, 1/2 MAX can be a
113 * reasonable default value.
114 */
115#ifndef AUDIO_DAC_OFF_VALUE
116# define AUDIO_DAC_OFF_VALUE AUDIO_DAC_SAMPLE_MAX / 2
117#endif
118
119#if AUDIO_DAC_OFF_VALUE > AUDIO_DAC_SAMPLE_MAX
120# error "AUDIO_DAC: OFF_VALUE may not be larger than SAMPLE_MAX"
121#endif
122
123/**
124 *user overridable sample generation/processing
125 */
126uint16_t dac_value_generate(void);
diff --git a/platforms/chibios/drivers/audio_dac_additive.c b/platforms/chibios/drivers/audio_dac_additive.c
new file mode 100644
index 000000000..db304adb8
--- /dev/null
+++ b/platforms/chibios/drivers/audio_dac_additive.c
@@ -0,0 +1,335 @@
1/* Copyright 2016-2019 Jack Humbert
2 * Copyright 2020 JohSchneider
3 *
4 * This program is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18#include "audio.h"
19#include <ch.h>
20#include <hal.h>
21
22/*
23 Audio Driver: DAC
24
25 which utilizes the dac unit many STM32 are equipped with, to output a modulated waveform from samples stored in the dac_buffer_* array who are passed to the hardware through DMA
26
27 it is also possible to have a custom sample-LUT by implementing/overriding 'dac_value_generate'
28
29 this driver allows for multiple simultaneous tones to be played through one single channel by doing additive wave-synthesis
30*/
31
32#if !defined(AUDIO_PIN)
33# error "Audio feature enabled, but no suitable pin selected as AUDIO_PIN - see docs/feature_audio under 'ARM (DAC additive)' for available options."
34#endif
35#if defined(AUDIO_PIN_ALT) && !defined(AUDIO_PIN_ALT_AS_NEGATIVE)
36# pragma message "Audio feature: AUDIO_PIN_ALT set, but not AUDIO_PIN_ALT_AS_NEGATIVE - pin will be left unused; audio might still work though."
37#endif
38
39#if !defined(AUDIO_PIN_ALT)
40// no ALT pin defined is valid, but the c-ifs below need some value set
41# define AUDIO_PIN_ALT PAL_NOLINE
42#endif
43
44#if !defined(AUDIO_DAC_SAMPLE_WAVEFORM_SINE) && !defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE) && !defined(AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE) && !defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID)
45# define AUDIO_DAC_SAMPLE_WAVEFORM_SINE
46#endif
47
48#ifdef AUDIO_DAC_SAMPLE_WAVEFORM_SINE
49/* one full sine wave over [0,2*pi], but shifted up one amplitude and left pi/4; for the samples to start at 0
50 */
51static const dacsample_t dac_buffer_sine[AUDIO_DAC_BUFFER_SIZE] = {
52 // 256 values, max 4095
53 0x0, 0x1, 0x2, 0x6, 0xa, 0xf, 0x16, 0x1e, 0x27, 0x32, 0x3d, 0x4a, 0x58, 0x67, 0x78, 0x89, 0x9c, 0xb0, 0xc5, 0xdb, 0xf2, 0x10a, 0x123, 0x13e, 0x159, 0x175, 0x193, 0x1b1, 0x1d1, 0x1f1, 0x212, 0x235, 0x258, 0x27c, 0x2a0, 0x2c6, 0x2ed, 0x314, 0x33c, 0x365, 0x38e, 0x3b8, 0x3e3, 0x40e, 0x43a, 0x467, 0x494, 0x4c2, 0x4f0, 0x51f, 0x54e, 0x57d, 0x5ad, 0x5dd, 0x60e, 0x63f, 0x670, 0x6a1, 0x6d3, 0x705, 0x737, 0x769, 0x79b, 0x7cd, 0x800, 0x832, 0x864, 0x896, 0x8c8, 0x8fa, 0x92c, 0x95e, 0x98f, 0x9c0, 0x9f1, 0xa22, 0xa52, 0xa82, 0xab1, 0xae0, 0xb0f, 0xb3d, 0xb6b, 0xb98, 0xbc5, 0xbf1, 0xc1c, 0xc47, 0xc71, 0xc9a, 0xcc3, 0xceb, 0xd12, 0xd39, 0xd5f, 0xd83, 0xda7, 0xdca, 0xded, 0xe0e, 0xe2e, 0xe4e, 0xe6c, 0xe8a, 0xea6, 0xec1, 0xedc, 0xef5, 0xf0d, 0xf24, 0xf3a, 0xf4f, 0xf63, 0xf76, 0xf87, 0xf98, 0xfa7, 0xfb5, 0xfc2, 0xfcd, 0xfd8, 0xfe1, 0xfe9, 0xff0, 0xff5, 0xff9, 0xffd, 0xffe,
54 0xfff, 0xffe, 0xffd, 0xff9, 0xff5, 0xff0, 0xfe9, 0xfe1, 0xfd8, 0xfcd, 0xfc2, 0xfb5, 0xfa7, 0xf98, 0xf87, 0xf76, 0xf63, 0xf4f, 0xf3a, 0xf24, 0xf0d, 0xef5, 0xedc, 0xec1, 0xea6, 0xe8a, 0xe6c, 0xe4e, 0xe2e, 0xe0e, 0xded, 0xdca, 0xda7, 0xd83, 0xd5f, 0xd39, 0xd12, 0xceb, 0xcc3, 0xc9a, 0xc71, 0xc47, 0xc1c, 0xbf1, 0xbc5, 0xb98, 0xb6b, 0xb3d, 0xb0f, 0xae0, 0xab1, 0xa82, 0xa52, 0xa22, 0x9f1, 0x9c0, 0x98f, 0x95e, 0x92c, 0x8fa, 0x8c8, 0x896, 0x864, 0x832, 0x800, 0x7cd, 0x79b, 0x769, 0x737, 0x705, 0x6d3, 0x6a1, 0x670, 0x63f, 0x60e, 0x5dd, 0x5ad, 0x57d, 0x54e, 0x51f, 0x4f0, 0x4c2, 0x494, 0x467, 0x43a, 0x40e, 0x3e3, 0x3b8, 0x38e, 0x365, 0x33c, 0x314, 0x2ed, 0x2c6, 0x2a0, 0x27c, 0x258, 0x235, 0x212, 0x1f1, 0x1d1, 0x1b1, 0x193, 0x175, 0x159, 0x13e, 0x123, 0x10a, 0xf2, 0xdb, 0xc5, 0xb0, 0x9c, 0x89, 0x78, 0x67, 0x58, 0x4a, 0x3d, 0x32, 0x27, 0x1e, 0x16, 0xf, 0xa, 0x6, 0x2, 0x1};
55#endif // AUDIO_DAC_SAMPLE_WAVEFORM_SINE
56#ifdef AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE
57static const dacsample_t dac_buffer_triangle[AUDIO_DAC_BUFFER_SIZE] = {
58 // 256 values, max 4095
59 0x0, 0x20, 0x40, 0x60, 0x80, 0xa0, 0xc0, 0xe0, 0x100, 0x120, 0x140, 0x160, 0x180, 0x1a0, 0x1c0, 0x1e0, 0x200, 0x220, 0x240, 0x260, 0x280, 0x2a0, 0x2c0, 0x2e0, 0x300, 0x320, 0x340, 0x360, 0x380, 0x3a0, 0x3c0, 0x3e0, 0x400, 0x420, 0x440, 0x460, 0x480, 0x4a0, 0x4c0, 0x4e0, 0x500, 0x520, 0x540, 0x560, 0x580, 0x5a0, 0x5c0, 0x5e0, 0x600, 0x620, 0x640, 0x660, 0x680, 0x6a0, 0x6c0, 0x6e0, 0x700, 0x720, 0x740, 0x760, 0x780, 0x7a0, 0x7c0, 0x7e0, 0x800, 0x81f, 0x83f, 0x85f, 0x87f, 0x89f, 0x8bf, 0x8df, 0x8ff, 0x91f, 0x93f, 0x95f, 0x97f, 0x99f, 0x9bf, 0x9df, 0x9ff, 0xa1f, 0xa3f, 0xa5f, 0xa7f, 0xa9f, 0xabf, 0xadf, 0xaff, 0xb1f, 0xb3f, 0xb5f, 0xb7f, 0xb9f, 0xbbf, 0xbdf, 0xbff, 0xc1f, 0xc3f, 0xc5f, 0xc7f, 0xc9f, 0xcbf, 0xcdf, 0xcff, 0xd1f, 0xd3f, 0xd5f, 0xd7f, 0xd9f, 0xdbf, 0xddf, 0xdff, 0xe1f, 0xe3f, 0xe5f, 0xe7f, 0xe9f, 0xebf, 0xedf, 0xeff, 0xf1f, 0xf3f, 0xf5f, 0xf7f, 0xf9f, 0xfbf, 0xfdf,
60 0xfff, 0xfdf, 0xfbf, 0xf9f, 0xf7f, 0xf5f, 0xf3f, 0xf1f, 0xeff, 0xedf, 0xebf, 0xe9f, 0xe7f, 0xe5f, 0xe3f, 0xe1f, 0xdff, 0xddf, 0xdbf, 0xd9f, 0xd7f, 0xd5f, 0xd3f, 0xd1f, 0xcff, 0xcdf, 0xcbf, 0xc9f, 0xc7f, 0xc5f, 0xc3f, 0xc1f, 0xbff, 0xbdf, 0xbbf, 0xb9f, 0xb7f, 0xb5f, 0xb3f, 0xb1f, 0xaff, 0xadf, 0xabf, 0xa9f, 0xa7f, 0xa5f, 0xa3f, 0xa1f, 0x9ff, 0x9df, 0x9bf, 0x99f, 0x97f, 0x95f, 0x93f, 0x91f, 0x8ff, 0x8df, 0x8bf, 0x89f, 0x87f, 0x85f, 0x83f, 0x81f, 0x800, 0x7e0, 0x7c0, 0x7a0, 0x780, 0x760, 0x740, 0x720, 0x700, 0x6e0, 0x6c0, 0x6a0, 0x680, 0x660, 0x640, 0x620, 0x600, 0x5e0, 0x5c0, 0x5a0, 0x580, 0x560, 0x540, 0x520, 0x500, 0x4e0, 0x4c0, 0x4a0, 0x480, 0x460, 0x440, 0x420, 0x400, 0x3e0, 0x3c0, 0x3a0, 0x380, 0x360, 0x340, 0x320, 0x300, 0x2e0, 0x2c0, 0x2a0, 0x280, 0x260, 0x240, 0x220, 0x200, 0x1e0, 0x1c0, 0x1a0, 0x180, 0x160, 0x140, 0x120, 0x100, 0xe0, 0xc0, 0xa0, 0x80, 0x60, 0x40, 0x20};
61#endif // AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE
62#ifdef AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE
63static const dacsample_t dac_buffer_square[AUDIO_DAC_BUFFER_SIZE] = {
64 [0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1] = 0, // first and
65 [AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = AUDIO_DAC_SAMPLE_MAX, // second half
66};
67#endif // AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE
68/*
69// four steps: 0, 1/3, 2/3 and 1
70static const dacsample_t dac_buffer_staircase[AUDIO_DAC_BUFFER_SIZE] = {
71 [0 ... AUDIO_DAC_BUFFER_SIZE/3 -1 ] = 0,
72 [AUDIO_DAC_BUFFER_SIZE / 4 ... AUDIO_DAC_BUFFER_SIZE / 2 -1 ] = AUDIO_DAC_SAMPLE_MAX / 3,
73 [AUDIO_DAC_BUFFER_SIZE / 2 ... 3 * AUDIO_DAC_BUFFER_SIZE / 4 -1 ] = 2 * AUDIO_DAC_SAMPLE_MAX / 3,
74 [3 * AUDIO_DAC_BUFFER_SIZE / 4 ... AUDIO_DAC_BUFFER_SIZE -1 ] = AUDIO_DAC_SAMPLE_MAX,
75}
76*/
77#ifdef AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID
78static const dacsample_t dac_buffer_trapezoid[AUDIO_DAC_BUFFER_SIZE] = {0x0, 0x1f, 0x7f, 0xdf, 0x13f, 0x19f, 0x1ff, 0x25f, 0x2bf, 0x31f, 0x37f, 0x3df, 0x43f, 0x49f, 0x4ff, 0x55f, 0x5bf, 0x61f, 0x67f, 0x6df, 0x73f, 0x79f, 0x7ff, 0x85f, 0x8bf, 0x91f, 0x97f, 0x9df, 0xa3f, 0xa9f, 0xaff, 0xb5f, 0xbbf, 0xc1f, 0xc7f, 0xcdf, 0xd3f, 0xd9f, 0xdff, 0xe5f, 0xebf, 0xf1f, 0xf7f, 0xfdf, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff, 0xfff,
79 0xfff, 0xfdf, 0xf7f, 0xf1f, 0xebf, 0xe5f, 0xdff, 0xd9f, 0xd3f, 0xcdf, 0xc7f, 0xc1f, 0xbbf, 0xb5f, 0xaff, 0xa9f, 0xa3f, 0x9df, 0x97f, 0x91f, 0x8bf, 0x85f, 0x7ff, 0x79f, 0x73f, 0x6df, 0x67f, 0x61f, 0x5bf, 0x55f, 0x4ff, 0x49f, 0x43f, 0x3df, 0x37f, 0x31f, 0x2bf, 0x25f, 0x1ff, 0x19f, 0x13f, 0xdf, 0x7f, 0x1f, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0};
80#endif // AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID
81
82static dacsample_t dac_buffer_empty[AUDIO_DAC_BUFFER_SIZE] = {AUDIO_DAC_OFF_VALUE};
83
84/* keep track of the sample position for for each frequency */
85static float dac_if[AUDIO_MAX_SIMULTANEOUS_TONES] = {0.0};
86
87static float active_tones_snapshot[AUDIO_MAX_SIMULTANEOUS_TONES] = {0, 0};
88static uint8_t active_tones_snapshot_length = 0;
89
90typedef enum {
91 OUTPUT_SHOULD_START,
92 OUTPUT_RUN_NORMALLY,
93 // path 1: wait for zero, then change/update active tones
94 OUTPUT_TONES_CHANGED,
95 OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE,
96 // path 2: hardware should stop, wait for zero then turn output off = stop the timer
97 OUTPUT_SHOULD_STOP,
98 OUTPUT_REACHED_ZERO_BEFORE_OFF,
99 OUTPUT_OFF,
100 OUTPUT_OFF_1,
101 OUTPUT_OFF_2, // trailing off: giving the DAC two more conversion cycles until the AUDIO_DAC_OFF_VALUE reaches the output, then turn the timer off, which leaves the output at that level
102 number_of_output_states
103} output_states_t;
104output_states_t state = OUTPUT_OFF_2;
105
106/**
107 * Generation of the waveform being passed to the callback. Declared weak so users
108 * can override it with their own wave-forms/noises.
109 */
110__attribute__((weak)) uint16_t dac_value_generate(void) {
111 // DAC is running/asking for values but snapshot length is zero -> must be playing a pause
112 if (active_tones_snapshot_length == 0) {
113 return AUDIO_DAC_OFF_VALUE;
114 }
115
116 /* doing additive wave synthesis over all currently playing tones = adding up
117 * sine-wave-samples for each frequency, scaled by the number of active tones
118 */
119 uint16_t value = 0;
120 float frequency = 0.0f;
121
122 for (uint8_t i = 0; i < active_tones_snapshot_length; i++) {
123 /* Note: a user implementation does not have to rely on the active_tones_snapshot, but
124 * could directly query the active frequencies through audio_get_processed_frequency */
125 frequency = active_tones_snapshot[i];
126
127 dac_if[i] = dac_if[i] + ((frequency * AUDIO_DAC_BUFFER_SIZE) / AUDIO_DAC_SAMPLE_RATE) * 2 / 3;
128 /*Note: the 2/3 are necessary to get the correct frequencies on the
129 * DAC output (as measured with an oscilloscope), since the gpt
130 * timer runs with 3*AUDIO_DAC_SAMPLE_RATE; and the DAC callback
131 * is called twice per conversion.*/
132
133 dac_if[i] = fmod(dac_if[i], AUDIO_DAC_BUFFER_SIZE);
134
135 // Wavetable generation/lookup
136 uint16_t dac_i = (uint16_t)dac_if[i];
137
138#if defined(AUDIO_DAC_SAMPLE_WAVEFORM_SINE)
139 value += dac_buffer_sine[dac_i] / active_tones_snapshot_length;
140#elif defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE)
141 value += dac_buffer_triangle[dac_i] / active_tones_snapshot_length;
142#elif defined(AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID)
143 value += dac_buffer_trapezoid[dac_i] / active_tones_snapshot_length;
144#elif defined(AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE)
145 value += dac_buffer_square[dac_i] / active_tones_snapshot_length;
146#endif
147 /*
148 // SINE
149 value += dac_buffer_sine[dac_i] / active_tones_snapshot_length / 3;
150 // TRIANGLE
151 value += dac_buffer_triangle[dac_i] / active_tones_snapshot_length / 3;
152 // SQUARE
153 value += dac_buffer_square[dac_i] / active_tones_snapshot_length / 3;
154 //NOTE: combination of these three wave-forms is more exemplary - and doesn't sound particularly good :-P
155 */
156
157 // STAIRS (mostly usefully as test-pattern)
158 // value_avg = dac_buffer_staircase[dac_i] / active_tones_snapshot_length;
159 }
160
161 return value;
162}
163
164/**
165 * DAC streaming callback. Does all of the main computing for playing songs.
166 *
167 * Note: chibios calls this CB twice: during the 'half buffer event', and the 'full buffer event'.
168 */
169static void dac_end(DACDriver *dacp) {
170 dacsample_t *sample_p = (dacp)->samples;
171
172 // work on the other half of the buffer
173 if (dacIsBufferComplete(dacp)) {
174 sample_p += AUDIO_DAC_BUFFER_SIZE / 2; // 'half_index'
175 }
176
177 for (uint8_t s = 0; s < AUDIO_DAC_BUFFER_SIZE / 2; s++) {
178 if (OUTPUT_OFF <= state) {
179 sample_p[s] = AUDIO_DAC_OFF_VALUE;
180 continue;
181 } else {
182 sample_p[s] = dac_value_generate();
183 }
184
185 /* zero crossing (or approach, whereas zero == DAC_OFF_VALUE, which can be configured to anything from 0 to DAC_SAMPLE_MAX)
186 * ============================*=*========================== AUDIO_DAC_SAMPLE_MAX
187 * * *
188 * * *
189 * ---------------------------------------------------------
190 * * * } AUDIO_DAC_SAMPLE_MAX/100
191 * --------------------------------------------------------- AUDIO_DAC_OFF_VALUE
192 * * * } AUDIO_DAC_SAMPLE_MAX/100
193 * ---------------------------------------------------------
194 * *
195 * * *
196 * * *
197 * =====*=*================================================= 0x0
198 */
199 if (((sample_p[s] + (AUDIO_DAC_SAMPLE_MAX / 100)) > AUDIO_DAC_OFF_VALUE) && // value approaches from below
200 (sample_p[s] < (AUDIO_DAC_OFF_VALUE + (AUDIO_DAC_SAMPLE_MAX / 100))) // or above
201 ) {
202 if ((OUTPUT_SHOULD_START == state) && (active_tones_snapshot_length > 0)) {
203 state = OUTPUT_RUN_NORMALLY;
204 } else if (OUTPUT_TONES_CHANGED == state) {
205 state = OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE;
206 } else if (OUTPUT_SHOULD_STOP == state) {
207 state = OUTPUT_REACHED_ZERO_BEFORE_OFF;
208 }
209 }
210
211 // still 'ramping up', reset the output to OFF_VALUE until the generated values reach that value, to do a smooth handover
212 if (OUTPUT_SHOULD_START == state) {
213 sample_p[s] = AUDIO_DAC_OFF_VALUE;
214 }
215
216 if ((OUTPUT_SHOULD_START == state) || (OUTPUT_REACHED_ZERO_BEFORE_OFF == state) || (OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE == state)) {
217 uint8_t active_tones = MIN(AUDIO_MAX_SIMULTANEOUS_TONES, audio_get_number_of_active_tones());
218 active_tones_snapshot_length = 0;
219 // update the snapshot - once, and only on occasion that something changed;
220 // -> saves cpu cycles (?)
221 for (uint8_t i = 0; i < active_tones; i++) {
222 float freq = audio_get_processed_frequency(i);
223 if (freq > 0) { // disregard 'rest' notes, with valid frequency 0.0f; which would only lower the resulting waveform volume during the additive synthesis step
224 active_tones_snapshot[active_tones_snapshot_length++] = freq;
225 }
226 }
227
228 if ((0 == active_tones_snapshot_length) && (OUTPUT_REACHED_ZERO_BEFORE_OFF == state)) {
229 state = OUTPUT_OFF;
230 }
231 if (OUTPUT_REACHED_ZERO_BEFORE_TONE_CHANGE == state) {
232 state = OUTPUT_RUN_NORMALLY;
233 }
234 }
235 }
236
237 // update audio internal state (note position, current_note, ...)
238 if (audio_update_state()) {
239 if (OUTPUT_SHOULD_STOP != state) {
240 state = OUTPUT_TONES_CHANGED;
241 }
242 }
243
244 if (OUTPUT_OFF <= state) {
245 if (OUTPUT_OFF_2 == state) {
246 // stopping timer6 = stopping the DAC at whatever value it is currently pushing to the output = AUDIO_DAC_OFF_VALUE
247 gptStopTimer(&GPTD6);
248 } else {
249 state++;
250 }
251 }
252}
253
254static void dac_error(DACDriver *dacp, dacerror_t err) {
255 (void)dacp;
256 (void)err;
257
258 chSysHalt("DAC failure. halp");
259}
260
261static const GPTConfig gpt6cfg1 = {.frequency = AUDIO_DAC_SAMPLE_RATE * 3,
262 .callback = NULL,
263 .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */
264 .dier = 0U};
265
266static const DACConfig dac_conf = {.init = AUDIO_DAC_OFF_VALUE, .datamode = DAC_DHRM_12BIT_RIGHT};
267
268/**
269 * @note The DAC_TRG(0) here selects the Timer 6 TRGO event, which is triggered
270 * on the rising edge after 3 APB1 clock cycles, causing our gpt6cfg1.frequency
271 * to be a third of what we expect.
272 *
273 * Here are all the values for DAC_TRG (TSEL in the ref manual)
274 * TIM15_TRGO 0b011
275 * TIM2_TRGO 0b100
276 * TIM3_TRGO 0b001
277 * TIM6_TRGO 0b000
278 * TIM7_TRGO 0b010
279 * EXTI9 0b110
280 * SWTRIG 0b111
281 */
282static const DACConversionGroup dac_conv_cfg = {.num_channels = 1U, .end_cb = dac_end, .error_cb = dac_error, .trigger = DAC_TRG(0b000)};
283
284void audio_driver_initialize() {
285 if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) {
286 palSetLineMode(A4, PAL_MODE_INPUT_ANALOG);
287 dacStart(&DACD1, &dac_conf);
288 }
289 if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) {
290 palSetLineMode(A5, PAL_MODE_INPUT_ANALOG);
291 dacStart(&DACD2, &dac_conf);
292 }
293
294 /* enable the output buffer, to directly drive external loads with no additional circuitry
295 *
296 * see: AN4566 Application note: Extending the DAC performance of STM32 microcontrollers
297 * Note: Buffer-Off bit -> has to be set 0 to enable the output buffer
298 * Note: enabling the output buffer imparts an additional dc-offset of a couple mV
299 *
300 * this is done here, reaching directly into the stm32 registers since chibios has not implemented BOFF handling yet
301 * (see: chibios/os/hal/ports/STM32/todo.txt '- BOFF handling in DACv1.'
302 */
303 DACD1.params->dac->CR &= ~DAC_CR_BOFF1;
304 DACD2.params->dac->CR &= ~DAC_CR_BOFF2;
305
306 if (AUDIO_PIN == A4) {
307 dacStartConversion(&DACD1, &dac_conv_cfg, dac_buffer_empty, AUDIO_DAC_BUFFER_SIZE);
308 } else if (AUDIO_PIN == A5) {
309 dacStartConversion(&DACD2, &dac_conv_cfg, dac_buffer_empty, AUDIO_DAC_BUFFER_SIZE);
310 }
311
312 // no inverted/out-of-phase waveform (yet?), only pulling AUDIO_PIN_ALT to AUDIO_DAC_OFF_VALUE
313#if defined(AUDIO_PIN_ALT_AS_NEGATIVE)
314 if (AUDIO_PIN_ALT == A4) {
315 dacPutChannelX(&DACD1, 0, AUDIO_DAC_OFF_VALUE);
316 } else if (AUDIO_PIN_ALT == A5) {
317 dacPutChannelX(&DACD2, 0, AUDIO_DAC_OFF_VALUE);
318 }
319#endif
320
321 gptStart(&GPTD6, &gpt6cfg1);
322}
323
324void audio_driver_stop(void) { state = OUTPUT_SHOULD_STOP; }
325
326void audio_driver_start(void) {
327 gptStartContinuous(&GPTD6, 2U);
328
329 for (uint8_t i = 0; i < AUDIO_MAX_SIMULTANEOUS_TONES; i++) {
330 dac_if[i] = 0.0f;
331 active_tones_snapshot[i] = 0.0f;
332 }
333 active_tones_snapshot_length = 0;
334 state = OUTPUT_SHOULD_START;
335}
diff --git a/platforms/chibios/drivers/audio_dac_basic.c b/platforms/chibios/drivers/audio_dac_basic.c
new file mode 100644
index 000000000..fac651350
--- /dev/null
+++ b/platforms/chibios/drivers/audio_dac_basic.c
@@ -0,0 +1,245 @@
1/* Copyright 2016-2020 Jack Humbert
2 * Copyright 2020 JohSchneider
3 *
4 * This program is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18#include "audio.h"
19#include "ch.h"
20#include "hal.h"
21
22/*
23 Audio Driver: DAC
24
25 which utilizes both channels of the DAC unit many STM32 are equipped with to output a modulated square-wave, from precomputed samples stored in a buffer, which is passed to the hardware through DMA
26
27 this driver can either be used to drive to separate speakers, wired to A4+Gnd and A5+Gnd, which allows two tones to be played simultaneously
28 OR
29 one speaker wired to A4+A5 with the AUDIO_PIN_ALT_AS_NEGATIVE define set - see docs/feature_audio
30
31*/
32
33#if !defined(AUDIO_PIN)
34# pragma message "Audio feature enabled, but no suitable pin selected as AUDIO_PIN - see docs/feature_audio under 'ARM (DAC basic)' for available options."
35// TODO: make this an 'error' instead; go through a breaking change, and add AUDIO_PIN A5 to all keyboards currently using AUDIO on STM32 based boards? - for now: set the define here
36# define AUDIO_PIN A5
37#endif
38// check configuration for ONE speaker, connected to both DAC pins
39#if defined(AUDIO_PIN_ALT_AS_NEGATIVE) && !defined(AUDIO_PIN_ALT)
40# error "Audio feature: AUDIO_PIN_ALT_AS_NEGATIVE set, but no pin configured as AUDIO_PIN_ALT"
41#endif
42
43#ifndef AUDIO_PIN_ALT
44// no ALT pin defined is valid, but the c-ifs below need some value set
45# define AUDIO_PIN_ALT -1
46#endif
47
48#if !defined(AUDIO_STATE_TIMER)
49# define AUDIO_STATE_TIMER GPTD8
50#endif
51
52// square-wave
53static const dacsample_t dac_buffer_1[AUDIO_DAC_BUFFER_SIZE] = {
54 // First half is max, second half is 0
55 [0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1] = AUDIO_DAC_SAMPLE_MAX,
56 [AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = 0,
57};
58
59// square-wave
60static const dacsample_t dac_buffer_2[AUDIO_DAC_BUFFER_SIZE] = {
61 // opposite of dac_buffer above
62 [0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1] = 0,
63 [AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = AUDIO_DAC_SAMPLE_MAX,
64};
65
66GPTConfig gpt6cfg1 = {.frequency = AUDIO_DAC_SAMPLE_RATE,
67 .callback = NULL,
68 .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */
69 .dier = 0U};
70GPTConfig gpt7cfg1 = {.frequency = AUDIO_DAC_SAMPLE_RATE,
71 .callback = NULL,
72 .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */
73 .dier = 0U};
74
75static void gpt_audio_state_cb(GPTDriver *gptp);
76GPTConfig gptStateUpdateCfg = {.frequency = 10,
77 .callback = gpt_audio_state_cb,
78 .cr2 = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event. */
79 .dier = 0U};
80
81static const DACConfig dac_conf_ch1 = {.init = AUDIO_DAC_OFF_VALUE, .datamode = DAC_DHRM_12BIT_RIGHT};
82static const DACConfig dac_conf_ch2 = {.init = AUDIO_DAC_OFF_VALUE, .datamode = DAC_DHRM_12BIT_RIGHT};
83
84/**
85 * @note The DAC_TRG(0) here selects the Timer 6 TRGO event, which is triggered
86 * on the rising edge after 3 APB1 clock cycles, causing our gpt6cfg1.frequency
87 * to be a third of what we expect.
88 *
89 * Here are all the values for DAC_TRG (TSEL in the ref manual)
90 * TIM15_TRGO 0b011
91 * TIM2_TRGO 0b100
92 * TIM3_TRGO 0b001
93 * TIM6_TRGO 0b000
94 * TIM7_TRGO 0b010
95 * EXTI9 0b110
96 * SWTRIG 0b111
97 */
98static const DACConversionGroup dac_conv_grp_ch1 = {.num_channels = 1U, .trigger = DAC_TRG(0b000)};
99static const DACConversionGroup dac_conv_grp_ch2 = {.num_channels = 1U, .trigger = DAC_TRG(0b010)};
100
101void channel_1_start(void) {
102 gptStart(&GPTD6, &gpt6cfg1);
103 gptStartContinuous(&GPTD6, 2U);
104 palSetPadMode(GPIOA, 4, PAL_MODE_INPUT_ANALOG);
105}
106
107void channel_1_stop(void) {
108 gptStopTimer(&GPTD6);
109 palSetPadMode(GPIOA, 4, PAL_MODE_OUTPUT_PUSHPULL);
110 palSetPad(GPIOA, 4);
111}
112
113static float channel_1_frequency = 0.0f;
114void channel_1_set_frequency(float freq) {
115 channel_1_frequency = freq;
116
117 channel_1_stop();
118 if (freq <= 0.0) // a pause/rest has freq=0
119 return;
120
121 gpt6cfg1.frequency = 2 * freq * AUDIO_DAC_BUFFER_SIZE;
122 channel_1_start();
123}
124float channel_1_get_frequency(void) { return channel_1_frequency; }
125
126void channel_2_start(void) {
127 gptStart(&GPTD7, &gpt7cfg1);
128 gptStartContinuous(&GPTD7, 2U);
129 palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG);
130}
131
132void channel_2_stop(void) {
133 gptStopTimer(&GPTD7);
134 palSetPadMode(GPIOA, 5, PAL_MODE_OUTPUT_PUSHPULL);
135 palSetPad(GPIOA, 5);
136}
137
138static float channel_2_frequency = 0.0f;
139void channel_2_set_frequency(float freq) {
140 channel_2_frequency = freq;
141
142 channel_2_stop();
143 if (freq <= 0.0) // a pause/rest has freq=0
144 return;
145
146 gpt7cfg1.frequency = 2 * freq * AUDIO_DAC_BUFFER_SIZE;
147 channel_2_start();
148}
149float channel_2_get_frequency(void) { return channel_2_frequency; }
150
151static void gpt_audio_state_cb(GPTDriver *gptp) {
152 if (audio_update_state()) {
153#if defined(AUDIO_PIN_ALT_AS_NEGATIVE)
154 // one piezo/speaker connected to both audio pins, the generated square-waves are inverted
155 channel_1_set_frequency(audio_get_processed_frequency(0));
156 channel_2_set_frequency(audio_get_processed_frequency(0));
157
158#else // two separate audio outputs/speakers
159 // primary speaker on A4, optional secondary on A5
160 if (AUDIO_PIN == A4) {
161 channel_1_set_frequency(audio_get_processed_frequency(0));
162 if (AUDIO_PIN_ALT == A5) {
163 if (audio_get_number_of_active_tones() > 1) {
164 channel_2_set_frequency(audio_get_processed_frequency(1));
165 } else {
166 channel_2_stop();
167 }
168 }
169 }
170
171 // primary speaker on A5, optional secondary on A4
172 if (AUDIO_PIN == A5) {
173 channel_2_set_frequency(audio_get_processed_frequency(0));
174 if (AUDIO_PIN_ALT == A4) {
175 if (audio_get_number_of_active_tones() > 1) {
176 channel_1_set_frequency(audio_get_processed_frequency(1));
177 } else {
178 channel_1_stop();
179 }
180 }
181 }
182#endif
183 }
184}
185
186void audio_driver_initialize() {
187 if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) {
188 palSetPadMode(GPIOA, 4, PAL_MODE_INPUT_ANALOG);
189 dacStart(&DACD1, &dac_conf_ch1);
190
191 // initial setup of the dac-triggering timer is still required, even
192 // though it gets reconfigured and restarted later on
193 gptStart(&GPTD6, &gpt6cfg1);
194 }
195
196 if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) {
197 palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG);
198 dacStart(&DACD2, &dac_conf_ch2);
199
200 gptStart(&GPTD7, &gpt7cfg1);
201 }
202
203 /* enable the output buffer, to directly drive external loads with no additional circuitry
204 *
205 * see: AN4566 Application note: Extending the DAC performance of STM32 microcontrollers
206 * Note: Buffer-Off bit -> has to be set 0 to enable the output buffer
207 * Note: enabling the output buffer imparts an additional dc-offset of a couple mV
208 *
209 * this is done here, reaching directly into the stm32 registers since chibios has not implemented BOFF handling yet
210 * (see: chibios/os/hal/ports/STM32/todo.txt '- BOFF handling in DACv1.'
211 */
212 DACD1.params->dac->CR &= ~DAC_CR_BOFF1;
213 DACD2.params->dac->CR &= ~DAC_CR_BOFF2;
214
215 // start state-updater
216 gptStart(&AUDIO_STATE_TIMER, &gptStateUpdateCfg);
217}
218
219void audio_driver_stop(void) {
220 if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) {
221 gptStopTimer(&GPTD6);
222
223 // stop the ongoing conversion and put the output in a known state
224 dacStopConversion(&DACD1);
225 dacPutChannelX(&DACD1, 0, AUDIO_DAC_OFF_VALUE);
226 }
227
228 if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) {
229 gptStopTimer(&GPTD7);
230
231 dacStopConversion(&DACD2);
232 dacPutChannelX(&DACD2, 0, AUDIO_DAC_OFF_VALUE);
233 }
234 gptStopTimer(&AUDIO_STATE_TIMER);
235}
236
237void audio_driver_start(void) {
238 if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) {
239 dacStartConversion(&DACD1, &dac_conv_grp_ch1, (dacsample_t *)dac_buffer_1, AUDIO_DAC_BUFFER_SIZE);
240 }
241 if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) {
242 dacStartConversion(&DACD2, &dac_conv_grp_ch2, (dacsample_t *)dac_buffer_2, AUDIO_DAC_BUFFER_SIZE);
243 }
244 gptStartContinuous(&AUDIO_STATE_TIMER, 2U);
245}
diff --git a/platforms/chibios/drivers/audio_pwm.h b/platforms/chibios/drivers/audio_pwm.h
new file mode 100644
index 000000000..86cab916e
--- /dev/null
+++ b/platforms/chibios/drivers/audio_pwm.h
@@ -0,0 +1,40 @@
1/* Copyright 2020 Jack Humbert
2 * Copyright 2020 JohSchneider
3 *
4 * This program is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17#pragma once
18
19#if !defined(AUDIO_PWM_DRIVER)
20// NOTE: Timer2 seems to be used otherwise in QMK, otherwise we could default to A5 (= TIM2_CH1, with PWMD2 and alternate-function(1))
21# define AUDIO_PWM_DRIVER PWMD1
22#endif
23
24#if !defined(AUDIO_PWM_CHANNEL)
25// NOTE: sticking to the STM data-sheet numbering: TIMxCH1 to TIMxCH4
26// default: STM32F303CC PA8+TIM1_CH1 -> 1
27# define AUDIO_PWM_CHANNEL 1
28#endif
29
30#if !defined(AUDIO_PWM_PAL_MODE)
31// pin-alternate function: see the data-sheet for which pin needs what AF to connect to TIMx_CHy
32// default: STM32F303CC PA8+TIM1_CH1 -> 6
33# define AUDIO_PWM_PAL_MODE 6
34#endif
35
36#if !defined(AUDIO_STATE_TIMER)
37// timer used to trigger updates in the audio-system, configured/enabled in chibios mcuconf.
38// Tim6 is the default for "larger" STMs, smaller ones might not have this one (enabled) and need to switch to a different one (e.g.: STM32F103 has only Tim1-Tim4)
39# define AUDIO_STATE_TIMER GPTD6
40#endif
diff --git a/platforms/chibios/drivers/audio_pwm_hardware.c b/platforms/chibios/drivers/audio_pwm_hardware.c
new file mode 100644
index 000000000..cd40019ee
--- /dev/null
+++ b/platforms/chibios/drivers/audio_pwm_hardware.c
@@ -0,0 +1,144 @@
1/* Copyright 2020 Jack Humbert
2 * Copyright 2020 JohSchneider
3 *
4 * This program is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18/*
19Audio Driver: PWM
20
21the duty-cycle is always kept at 50%, and the pwm-period is adjusted to match the frequency of a note to be played back.
22
23this driver uses the chibios-PWM system to produce a square-wave on specific output pins that are connected to the PWM hardware.
24The hardware directly toggles the pin via its alternate function. see your MCUs data-sheet for which pin can be driven by what timer - looking for TIMx_CHy and the corresponding alternate function.
25
26 */
27
28#include "audio.h"
29#include "ch.h"
30#include "hal.h"
31
32#if !defined(AUDIO_PIN)
33# error "Audio feature enabled, but no pin selected - see docs/feature_audio under the ARM PWM settings"
34#endif
35
36extern bool playing_note;
37extern bool playing_melody;
38extern uint8_t note_timbre;
39
40static PWMConfig pwmCFG = {
41 .frequency = 100000, /* PWM clock frequency */
42 // CHIBIOS-BUG? can't set the initial period to <2, or the pwm (hard or software) takes ~130ms with .frequency=500000 for a pwmChangePeriod to take effect; with no output=silence in the meantime
43 .period = 2, /* initial PWM period (in ticks) 1S (1/10kHz=0.1mS 0.1ms*10000 ticks=1S) */
44 .callback = NULL, /* no callback, the hardware directly toggles the pin */
45 .channels =
46 {
47#if AUDIO_PWM_CHANNEL == 4
48 {PWM_OUTPUT_DISABLED, NULL}, /* channel 0 -> TIMx_CH1 */
49 {PWM_OUTPUT_DISABLED, NULL}, /* channel 1 -> TIMx_CH2 */
50 {PWM_OUTPUT_DISABLED, NULL}, /* channel 2 -> TIMx_CH3 */
51 {PWM_OUTPUT_ACTIVE_HIGH, NULL} /* channel 3 -> TIMx_CH4 */
52#elif AUDIO_PWM_CHANNEL == 3
53 {PWM_OUTPUT_DISABLED, NULL},
54 {PWM_OUTPUT_DISABLED, NULL},
55 {PWM_OUTPUT_ACTIVE_HIGH, NULL}, /* TIMx_CH3 */
56 {PWM_OUTPUT_DISABLED, NULL}
57#elif AUDIO_PWM_CHANNEL == 2
58 {PWM_OUTPUT_DISABLED, NULL},
59 {PWM_OUTPUT_ACTIVE_HIGH, NULL}, /* TIMx_CH2 */
60 {PWM_OUTPUT_DISABLED, NULL},
61 {PWM_OUTPUT_DISABLED, NULL}
62#else /*fallback to CH1 */
63 {PWM_OUTPUT_ACTIVE_HIGH, NULL}, /* TIMx_CH1 */
64 {PWM_OUTPUT_DISABLED, NULL},
65 {PWM_OUTPUT_DISABLED, NULL},
66 {PWM_OUTPUT_DISABLED, NULL}
67#endif
68 },
69};
70
71static float channel_1_frequency = 0.0f;
72void channel_1_set_frequency(float freq) {
73 channel_1_frequency = freq;
74
75 if (freq <= 0.0) // a pause/rest has freq=0
76 return;
77
78 pwmcnt_t period = (pwmCFG.frequency / freq);
79 pwmChangePeriod(&AUDIO_PWM_DRIVER, period);
80 pwmEnableChannel(&AUDIO_PWM_DRIVER, AUDIO_PWM_CHANNEL - 1,
81 // adjust the duty-cycle so that the output is for 'note_timbre' duration HIGH
82 PWM_PERCENTAGE_TO_WIDTH(&AUDIO_PWM_DRIVER, (100 - note_timbre) * 100));
83}
84
85float channel_1_get_frequency(void) { return channel_1_frequency; }
86
87void channel_1_start(void) {
88 pwmStop(&AUDIO_PWM_DRIVER);
89 pwmStart(&AUDIO_PWM_DRIVER, &pwmCFG);
90}
91
92void channel_1_stop(void) { pwmStop(&AUDIO_PWM_DRIVER); }
93
94static void gpt_callback(GPTDriver *gptp);
95GPTConfig gptCFG = {
96 /* a whole note is one beat, which is - per definition in musical_notes.h - set to 64
97 the longest note is BREAVE_DOT=128+64=192, the shortest SIXTEENTH=4
98 the tempo (which might vary!) is in bpm (beats per minute)
99 therefore: if the timer ticks away at .frequency = (60*64)Hz,
100 and the .interval counts from 64 downwards - audio_update_state is
101 called just often enough to not miss any notes
102 */
103 .frequency = 60 * 64,
104 .callback = gpt_callback,
105};
106
107void audio_driver_initialize(void) {
108 pwmStart(&AUDIO_PWM_DRIVER, &pwmCFG);
109
110 // connect the AUDIO_PIN to the PWM hardware
111#if defined(USE_GPIOV1) // STM32F103C8
112 palSetLineMode(AUDIO_PIN, PAL_MODE_ALTERNATE_PUSHPULL);
113#else // GPIOv2 (or GPIOv3 for f4xx, which is the same/compatible at this command)
114 palSetLineMode(AUDIO_PIN, PAL_MODE_ALTERNATE(AUDIO_PWM_PAL_MODE));
115#endif
116
117 gptStart(&AUDIO_STATE_TIMER, &gptCFG);
118}
119
120void audio_driver_start(void) {
121 channel_1_stop();
122 channel_1_start();
123
124 if (playing_note || playing_melody) {
125 gptStartContinuous(&AUDIO_STATE_TIMER, 64);
126 }
127}
128
129void audio_driver_stop(void) {
130 channel_1_stop();
131 gptStopTimer(&AUDIO_STATE_TIMER);
132}
133
134/* a regular timer task, that checks the note to be currently played
135 * and updates the pwm to output that frequency
136 */
137static void gpt_callback(GPTDriver *gptp) {
138 float freq; // TODO: freq_alt
139
140 if (audio_update_state()) {
141 freq = audio_get_processed_frequency(0); // freq_alt would be index=1
142 channel_1_set_frequency(freq);
143 }
144}
diff --git a/platforms/chibios/drivers/audio_pwm_software.c b/platforms/chibios/drivers/audio_pwm_software.c
new file mode 100644
index 000000000..15c3e98b6
--- /dev/null
+++ b/platforms/chibios/drivers/audio_pwm_software.c
@@ -0,0 +1,164 @@
1/* Copyright 2020 Jack Humbert
2 * Copyright 2020 JohSchneider
3 *
4 * This program is free software: you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation, either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18/*
19Audio Driver: PWM
20
21the duty-cycle is always kept at 50%, and the pwm-period is adjusted to match the frequency of a note to be played back.
22
23this driver uses the chibios-PWM system to produce a square-wave on any given output pin in software
24- a pwm callback is used to set/clear the configured pin.
25
26 */
27#include "audio.h"
28#include "ch.h"
29#include "hal.h"
30
31#if !defined(AUDIO_PIN)
32# error "Audio feature enabled, but no pin selected - see docs/feature_audio under the ARM PWM settings"
33#endif
34extern bool playing_note;
35extern bool playing_melody;
36extern uint8_t note_timbre;
37
38static void pwm_audio_period_callback(PWMDriver *pwmp);
39static void pwm_audio_channel_interrupt_callback(PWMDriver *pwmp);
40
41static PWMConfig pwmCFG = {
42 .frequency = 100000, /* PWM clock frequency */
43 // CHIBIOS-BUG? can't set the initial period to <2, or the pwm (hard or software) takes ~130ms with .frequency=500000 for a pwmChangePeriod to take effect; with no output=silence in the meantime
44 .period = 2, /* initial PWM period (in ticks) 1S (1/10kHz=0.1mS 0.1ms*10000 ticks=1S) */
45 .callback = pwm_audio_period_callback,
46 .channels =
47 {
48 // software-PWM just needs another callback on any channel
49 {PWM_OUTPUT_ACTIVE_HIGH, pwm_audio_channel_interrupt_callback}, /* channel 0 -> TIMx_CH1 */
50 {PWM_OUTPUT_DISABLED, NULL}, /* channel 1 -> TIMx_CH2 */
51 {PWM_OUTPUT_DISABLED, NULL}, /* channel 2 -> TIMx_CH3 */
52 {PWM_OUTPUT_DISABLED, NULL} /* channel 3 -> TIMx_CH4 */
53 },
54};
55
56static float channel_1_frequency = 0.0f;
57void channel_1_set_frequency(float freq) {
58 channel_1_frequency = freq;
59
60 if (freq <= 0.0) // a pause/rest has freq=0
61 return;
62
63 pwmcnt_t period = (pwmCFG.frequency / freq);
64 pwmChangePeriod(&AUDIO_PWM_DRIVER, period);
65
66 pwmEnableChannel(&AUDIO_PWM_DRIVER, AUDIO_PWM_CHANNEL - 1,
67 // adjust the duty-cycle so that the output is for 'note_timbre' duration HIGH
68 PWM_PERCENTAGE_TO_WIDTH(&AUDIO_PWM_DRIVER, (100 - note_timbre) * 100));
69}
70
71float channel_1_get_frequency(void) { return channel_1_frequency; }
72
73void channel_1_start(void) {
74 pwmStop(&AUDIO_PWM_DRIVER);
75 pwmStart(&AUDIO_PWM_DRIVER, &pwmCFG);
76
77 pwmEnablePeriodicNotification(&AUDIO_PWM_DRIVER);
78 pwmEnableChannelNotification(&AUDIO_PWM_DRIVER, AUDIO_PWM_CHANNEL - 1);
79}
80
81void channel_1_stop(void) {
82 pwmStop(&AUDIO_PWM_DRIVER);
83
84 palClearLine(AUDIO_PIN); // leave the line low, after last note was played
85
86#if defined(AUDIO_PIN_ALT) && defined(AUDIO_PIN_ALT_AS_NEGATIVE)
87 palClearLine(AUDIO_PIN_ALT); // leave the line low, after last note was played
88#endif
89}
90
91// generate a PWM signal on any pin, not necessarily the one connected to the timer
92static void pwm_audio_period_callback(PWMDriver *pwmp) {
93 (void)pwmp;
94 palClearLine(AUDIO_PIN);
95
96#if defined(AUDIO_PIN_ALT) && defined(AUDIO_PIN_ALT_AS_NEGATIVE)
97 palSetLine(AUDIO_PIN_ALT);
98#endif
99}
100static void pwm_audio_channel_interrupt_callback(PWMDriver *pwmp) {
101 (void)pwmp;
102 if (channel_1_frequency > 0) {
103 palSetLine(AUDIO_PIN); // generate a PWM signal on any pin, not necessarily the one connected to the timer
104#if defined(AUDIO_PIN_ALT) && defined(AUDIO_PIN_ALT_AS_NEGATIVE)
105 palClearLine(AUDIO_PIN_ALT);
106#endif
107 }
108}
109
110static void gpt_callback(GPTDriver *gptp);
111GPTConfig gptCFG = {
112 /* a whole note is one beat, which is - per definition in musical_notes.h - set to 64
113 the longest note is BREAVE_DOT=128+64=192, the shortest SIXTEENTH=4
114 the tempo (which might vary!) is in bpm (beats per minute)
115 therefore: if the timer ticks away at .frequency = (60*64)Hz,
116 and the .interval counts from 64 downwards - audio_update_state is
117 called just often enough to not miss anything
118 */
119 .frequency = 60 * 64,
120 .callback = gpt_callback,
121};
122
123void audio_driver_initialize(void) {
124 pwmStart(&AUDIO_PWM_DRIVER, &pwmCFG);
125
126 palSetLineMode(AUDIO_PIN, PAL_MODE_OUTPUT_PUSHPULL);
127 palClearLine(AUDIO_PIN);
128
129#if defined(AUDIO_PIN_ALT) && defined(AUDIO_PIN_ALT_AS_NEGATIVE)
130 palSetLineMode(AUDIO_PIN_ALT, PAL_MODE_OUTPUT_PUSHPULL);
131 palClearLine(AUDIO_PIN_ALT);
132#endif
133
134 pwmEnablePeriodicNotification(&AUDIO_PWM_DRIVER); // enable pwm callbacks
135 pwmEnableChannelNotification(&AUDIO_PWM_DRIVER, AUDIO_PWM_CHANNEL - 1);
136
137 gptStart(&AUDIO_STATE_TIMER, &gptCFG);
138}
139
140void audio_driver_start(void) {
141 channel_1_stop();
142 channel_1_start();
143
144 if (playing_note || playing_melody) {
145 gptStartContinuous(&AUDIO_STATE_TIMER, 64);
146 }
147}
148
149void audio_driver_stop(void) {
150 channel_1_stop();
151 gptStopTimer(&AUDIO_STATE_TIMER);
152}
153
154/* a regular timer task, that checks the note to be currently played
155 * and updates the pwm to output that frequency
156 */
157static void gpt_callback(GPTDriver *gptp) {
158 float freq; // TODO: freq_alt
159
160 if (audio_update_state()) {
161 freq = audio_get_processed_frequency(0); // freq_alt would be index=1
162 channel_1_set_frequency(freq);
163 }
164}